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RISC Architecture
Ch 12

Some History
Instruction Usage 

Characteristics
Large Register Files
Register Allocation 

Optimization
RISC vs. CISC
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Original Ideas Behind CISC
(Complex Instruction Set Comp.)
• Make it easy target for compiler

– small semantic gap between HLL source code 
and machine language representation

– good at the time when compiler technology big 
problem

– make it easier to design new, more complex 
languages 

• Do things in HW, not in SW
– addressing mode for 2D array reference?
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Occam's Toothbrush 

• The simple case is usually the most frequent and 
the easiest to optimize!

• Do simple, fast things in hardware and be sure the 
rest can be handled correctly in software
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RISC Approach (2)

• Optimize for execution speed instead of 
ease of compilation
– compilers are good, let them do the hard work
– do most important things very well in HW 

(e.g., 1-dim array reference) and 
the rest in SW (e.g., 3-dim. array references)

• What are most important things?
– those that consume most of the time

(in current systems?)
– is this a moving target?
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Amdahl’s Law (5)

Speedup due to an enhancement is proportional to the 
fraction of the time that the enhancement can be used

Floating point instructions improved to run 2X; but only 
10% of actual instructions are FP?

Speedupoverall = 

ExTimenew = 

ExTimeold

ExTimenew

1
0.95

= 1.053=

ExTimeold x  ( 0.9 * 1.0 +  .1 * 0.5) 

No speedup

<< 2   !!!

=  0.95 x ExTimeold
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Where is Time Spent? (6)

• Dynamic behaviour
– execution time behaviour

• Which operations are most common?
• Which types of operands are most 

common?
• Which addressing modes are most 

common?
• Which cases are most common?

– E.g., number of subroutine parameters?
• What is the case with current machines?

Table 12.2

Table 12.3

Table 12.4



Computer Organization II 09/10/2001

Chapter 12b, RISC Architecture 2

2409/10/2001 Copyright Teemu Kerola 2001

Original Ideas Behind RISC (3)

• Very large set of registers
– more registers than can be addressed in any single 

machine instruction?
– compilers can do good register allocation

• Very simple and small instruction set is faster
– instruction pipeline is easy to optimise 

• Economics
– Simple to implement 

⇒ quickly to market ⇒ beat competition 
⇒ recover development costs ⇒ stay in business
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CISC Architecture (5)

• Large and complex instruction sets
– direct implementation of HLL statements

• case statement? 
• array or record reference?

• May be targeted to specific high level 
language
– may not be so good for others

• Many addressing modes
• Many data 

types
char string, float, int, leading separate string, 
numeric string, packed decimal string, string, 
trailing numeric string, variable length bit field

Vax11/780

E.g., i432 and Ada

microJava, JEM?
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Large Register File

• Overlapping register windows
– fixed max nr (6?) of subroutine parameters
– fixed max nr of local variables
– function return values are directly accessible to 

calling routine in temporary registers
• no copying needed

• I.e., when possible, use registers instead of 
stack for subroutine implementation

Fig. 12.1
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Problems with 
Large Register Files (2)

• What if run out of register sets?
– save & restore values from memory (stack)
– hopefully not very common

• call stacks are usually not very deep!
• find out from studies what is enough usually

• Global variables
– store them always in memory?
– use another, separate register file?

Fig. 12.2
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Register Files vs. Cache (2)

• Would it be better to use the same real 
estate (chip area) as cache?
– register files have better locality
– caches are there anyway
– caches solve global variable problem 

naturally
• no compiler help needed  

– accessing register files is faster
• Third way to use the space for register 

files: register renaming
– see next lecture on superscalar architecture

Fig. 12.3

Table 12.5
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Register Allocation (3)

• Goal: Prob(operand in register) = high
• Symbolic register: any quantity that could 

be in register
• Allocate symbolic regs to real regs

– if some symbolic regs are not used in same time 
intervals, then they can be assigned to the same 
real regs

– use graph colouring problem to solve reg 
allocation problem
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Graph Colouring Problem (2)

• Given a graph with connected nodes, assign 
n colours so that no neighbouring node has 
the same colour
– topology
– NP complete problem (see course on Design 

and Analysis of Algorithms)
• Application to register allocation

– node = symbolic register
– connecting line: simultaneous usage
– no connecting line: can allocate symbolic 

registers to same physical register
– n colors = n registers

Fig. 12.4
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How Many Registers Needed?

• Usually 32 enough
– more ⇒ longer register address in instruction
– more ⇒ no real gain in performance

• Less than 16?
– Register allocation becomes difficult
– not enough registers 
⇒ store more symbolic registers in memory 
⇒ slower execution
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RISC Architecture (4)

• Complete one (or more!) instruction per 
cycle
– read reg operands, do ALU, store reg result
– all instructions are simple instructions

• Register to register operations
– load-store architecture

• Simple addressing modes
– easy to compute effective address

• Simple instruction formats
– easy to load and parse instructions
– fixed length
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RISC vs. CISC
• Fixed instruction length (32 bits)
• Very few addressing modes
• No indirect addressing
• Load-store architecture

– only load/store instructions access memory
• At most one operand in memory
• Aligned data
• At least 32 addressable registers
• At least 16 FP registers

Table 12.8
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RISC & CISC United? (5)

• Pentium II, CISC architecture
• Each complex CISC instruction translated during 

execution (in CPU) into multiple fixed length 118 
bit micro-operations (uop)
– 1-4 uops/IA-32 (32 bit Intel Architecture) instruction 

• Lower level implementation is RISC, working 
with RISC micro-ops

• Best of both worlds?
• Could CPU area/time be better spent without this 

translation?
– Who wants to try? Transmeta Corporation?
– Why? Why not?
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RISC & CISC United? (3)

• Crusoe (by Transmeta) – emulate CISC
– CISC architecture (IA-32, IA-64, Java?) visible to 

outside
• Each complex CISC instruction translated just 

before execution (in separate JIT translation with 
possibly optimized code generation) into multiple 
fixed length simple micro-operations
– translation in SW, not in HW like with Pentium 

• Lower level implementation is RISC, working 
with RISC micro-ops
– VLIW (very long instruction word, 128 bits) 

• 4 uops/instruction  (I.e., 4 atoms/molecule)
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-- End of Chapter 12: History and RISC --

???

50 years

50 years


