
Computer Organization II 09/10/2001

Chapter 12b, RISC Architecture 1

1809/10/2001 Copyright Teemu Kerola 2001

RISC Architecture
Ch 12

Some History
Instruction Usage

Characteristics
Large Register Files
Register Allocation

Optimization
RISC vs. CISC

1909/10/2001 Copyright Teemu Kerola 2001

Original Ideas Behind CISC
(Complex Instruction Set Comp.)
• Make it easy target for compiler

– small semantic gap between HLL source code
and machine language representation

– good at the time when compiler technology big
problem

– make it easier to design new, more complex
languages

• Do things in HW, not in SW
– addressing mode for 2D array reference?

2009/10/2001 Copyright Teemu Kerola 2001

Occam's Toothbrush

• The simple case is usually the most frequent and
the easiest to optimize!

• Do simple, fast things in hardware and be sure the
rest can be handled correctly in software

2109/10/2001 Copyright Teemu Kerola 2001

RISC Approach (2)

• Optimize for execution speed instead of
ease of compilation
– compilers are good, let them do the hard work
– do most important things very well in HW

(e.g., 1-dim array reference) and
the rest in SW (e.g., 3-dim. array references)

• What are most important things?
– those that consume most of the time

(in current systems?)
– is this a moving target?

2209/10/2001 Copyright Teemu Kerola 2001

Amdahl’s Law (5)

Speedup due to an enhancement is proportional to the
fraction of the time that the enhancement can be used

Floating point instructions improved to run 2X; but only
10% of actual instructions are FP?

Speedupoverall =

ExTimenew =

ExTimeold

ExTimenew

1
0.95

= 1.053=

ExTimeold x (0.9 * 1.0 + .1 * 0.5)

No speedup

<< 2 !!!

= 0.95 x ExTimeold

2309/10/2001 Copyright Teemu Kerola 2001

Where is Time Spent? (6)

• Dynamic behaviour
– execution time behaviour

• Which operations are most common?
• Which types of operands are most

common?
• Which addressing modes are most

common?
• Which cases are most common?

– E.g., number of subroutine parameters?
• What is the case with current machines?

Table 12.2

Table 12.3

Table 12.4

Computer Organization II 09/10/2001

Chapter 12b, RISC Architecture 2

2409/10/2001 Copyright Teemu Kerola 2001

Original Ideas Behind RISC (3)

• Very large set of registers
– more registers than can be addressed in any single

machine instruction?
– compilers can do good register allocation

• Very simple and small instruction set is faster
– instruction pipeline is easy to optimise

• Economics
– Simple to implement

⇒ quickly to market ⇒ beat competition
⇒ recover development costs ⇒ stay in business

2509/10/2001 Copyright Teemu Kerola 2001

CISC Architecture (5)

• Large and complex instruction sets
– direct implementation of HLL statements

• case statement?
• array or record reference?

• May be targeted to specific high level
language
– may not be so good for others

• Many addressing modes
• Many data

types
char string, float, int, leading separate string,
numeric string, packed decimal string, string,
trailing numeric string, variable length bit field

Vax11/780

E.g., i432 and Ada

microJava, JEM?

2609/10/2001 Copyright Teemu Kerola 2001

Large Register File

• Overlapping register windows
– fixed max nr (6?) of subroutine parameters
– fixed max nr of local variables
– function return values are directly accessible to

calling routine in temporary registers
• no copying needed

• I.e., when possible, use registers instead of
stack for subroutine implementation

Fig. 12.1

2709/10/2001 Copyright Teemu Kerola 2001

Problems with
Large Register Files (2)

• What if run out of register sets?
– save & restore values from memory (stack)
– hopefully not very common

• call stacks are usually not very deep!
• find out from studies what is enough usually

• Global variables
– store them always in memory?
– use another, separate register file?

Fig. 12.2

2809/10/2001 Copyright Teemu Kerola 2001

Register Files vs. Cache (2)

• Would it be better to use the same real
estate (chip area) as cache?
– register files have better locality
– caches are there anyway
– caches solve global variable problem

naturally
• no compiler help needed

– accessing register files is faster
• Third way to use the space for register

files: register renaming
– see next lecture on superscalar architecture

Fig. 12.3

Table 12.5

2909/10/2001 Copyright Teemu Kerola 2001

Register Allocation (3)

• Goal: Prob(operand in register) = high
• Symbolic register: any quantity that could

be in register
• Allocate symbolic regs to real regs

– if some symbolic regs are not used in same time
intervals, then they can be assigned to the same
real regs

– use graph colouring problem to solve reg
allocation problem

Computer Organization II 09/10/2001

Chapter 12b, RISC Architecture 3

3009/10/2001 Copyright Teemu Kerola 2001

Graph Colouring Problem (2)

• Given a graph with connected nodes, assign
n colours so that no neighbouring node has
the same colour
– topology
– NP complete problem (see course on Design

and Analysis of Algorithms)
• Application to register allocation

– node = symbolic register
– connecting line: simultaneous usage
– no connecting line: can allocate symbolic

registers to same physical register
– n colors = n registers

Fig. 12.4

3109/10/2001 Copyright Teemu Kerola 2001

How Many Registers Needed?

• Usually 32 enough
– more ⇒ longer register address in instruction
– more ⇒ no real gain in performance

• Less than 16?
– Register allocation becomes difficult
– not enough registers
⇒ store more symbolic registers in memory
⇒ slower execution

3209/10/2001 Copyright Teemu Kerola 2001

RISC Architecture (4)

• Complete one (or more!) instruction per
cycle
– read reg operands, do ALU, store reg result
– all instructions are simple instructions

• Register to register operations
– load-store architecture

• Simple addressing modes
– easy to compute effective address

• Simple instruction formats
– easy to load and parse instructions
– fixed length

3309/10/2001 Copyright Teemu Kerola 2001

RISC vs. CISC
• Fixed instruction length (32 bits)
• Very few addressing modes
• No indirect addressing
• Load-store architecture

– only load/store instructions access memory
• At most one operand in memory
• Aligned data
• At least 32 addressable registers
• At least 16 FP registers

Table 12.8

3409/10/2001 Copyright Teemu Kerola 2001

RISC & CISC United? (5)

• Pentium II, CISC architecture
• Each complex CISC instruction translated during

execution (in CPU) into multiple fixed length 118
bit micro-operations (uop)
– 1-4 uops/IA-32 (32 bit Intel Architecture) instruction

• Lower level implementation is RISC, working
with RISC micro-ops

• Best of both worlds?
• Could CPU area/time be better spent without this

translation?
– Who wants to try? Transmeta Corporation?
– Why? Why not?

3509/10/2001 Copyright Teemu Kerola 2001

RISC & CISC United? (3)

• Crusoe (by Transmeta) – emulate CISC
– CISC architecture (IA-32, IA-64, Java?) visible to

outside
• Each complex CISC instruction translated just

before execution (in separate JIT translation with
possibly optimized code generation) into multiple
fixed length simple micro-operations
– translation in SW, not in HW like with Pentium

• Lower level implementation is RISC, working
with RISC micro-ops
– VLIW (very long instruction word, 128 bits)

• 4 uops/instruction (I.e., 4 atoms/molecule)

Computer Organization II 09/10/2001

Chapter 12b, RISC Architecture 4

3609/10/2001 Copyright Teemu Kerola 2001

-- End of Chapter 12: History and RISC --

???

50 years

50 years

