Computer Organization |1

26/09/2001

CPU Structure and Function
Ch11

General Organisation
Registers
Instruction Cycle
Pipelining
Branch Prediction
Interrupts

26/09/2001 Copyright Teemu Kerola 2001 1

User Visible Registers

 Varies from one architecture to another
» Genera purposeregister (GPR)
— Data, address, index, PC, condition,
» Dataregister
— Int, FP, Double, Index
¢ Addressregister
» Segment and stack pointers
— only privileged instruction can write?
Condition codes
— result of some previous ALU operation

26/09/2001 Copyright Teemu Kerola 2001 4

General CPU Organization ¢
e« ALU

— does all real work

* Registers
— data stored here

* Internal CPU Bus

« Control More in Chapters 14-15
— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit isdoing at any given clock cycle

26/09/2001 Copyright Teemu Kerola 2001 2

Control and Status Registers s

« PC
— next instruction (not current!)
— part of process state

« IR, Instruction (Decoding) Register
— current instruction

* MAR, Memory Address Register
— current memory address

* MBR, Memory Buffer Register
— current data to/from memory

¢ PSW, Program Status Word
— what is allowed? What is going on?
— part of process state

26/09/2001 Copyright Teemu Kerola 2001 5

Register Organisation (

 Registers make up CPU work space

e User visibleregisters ADD R1R2R3
— accessible directly viainstructions

Control and status registers BNeq Loop

— may be accessible indirectly viainstructions
—may be accessible only internally 'HwW exception
Internal latches for temporary storage
during instruction execution

— E.g., ALU operand either from constant in
instruction or from machine register

26/09/2001 Copyright Teemu Kerola 2001 3

PSW - Program Status Word ¢

o Stateinfo from latest ALU-op
— Sign, zero?
— Carry (for multiword ALU ops)?
— Overflow?

* Interrupts that are enabl ed/disabled?
 Pending interrupts?

» CPU execution mode (supervisor, user)?
* Stack pointer, page table pointer?

* 1/Oregisters?

26/09/2001 Copyright Teemu Kerola 2001 6

Chapter 11, CPU Structure and Function

Computer Organization 11 26/09/2001

Pipelined Laundry «

Instruction CyC|e @ 6PM 7 8 9 10
« Basic cycle with interrupt handling } —
« Indirect cycle Figs11.5-6 S ——_
) 3% . .40 40 40 20 Time for one load

Data Flow

— CPU, Bus, Memory

Data Path

Latency

X 90 minutes per load

1 15 Ioads per hour

~un o -

— CPU’s“internal databus’ or “data mesh” ? Throughput
— All computation is data transformations d AVefage speed
occurring on the data path : Max sp%d’7
— Control signals determine data flow & action | 1.5 load per hour]|
for each clock cycle * Pipelined laundry takes 3.5 hours for 4 loads
« At best case, laundry is completed every 40 minutes
26/09/2001 Copyright Teemu Kerola 2001 7 26/09/2001 Copyright Teemu Kerola 2001

Pipelining Lessons «
* Pipelining doesn’'t help 6PM 7 8 9
. P
latency of single task, but Time

it helps throughput of
the entire workload

Pipeline rate limited by

Pipeline Example (iukutinne)

 Laundry Example (David A. Patterson)
« Ann, Brian, Cathy, Dave

each have oneload of clothes

to wash, dry, and fold

+ Washer takes 30 minutes slowest pipeline stage
-’ » Multiple tasks operating
* Dryer takes 40 minutes W simultaneously
* Potential speedup
* “Folder” takes 20 minutes . = maximum possible speedup | (nopeutus)
& = Number pipe stages
26/09/2001 Copyright Teemu Kerola 2001 8 26/09/2001 Copyright Teemu Kerola 2001 11

Sequential Laundry Pipelining Lessons ¢

Mid-

6 ‘PM 7 8 9 10 11 night Unbalanced lengths of pipe| 6pm 7 8 9
\ Time stages reduces speedup S
ettt « May need more resources 30 40 40 40 40 20
= 30 40 20 30 40 20 30 40 20 30 40 20 ay MOore FesOurces o T
= Time for one load — Enough eectrical current A
2 IIE’ 7 o a‘e”C (viive?) to run both washer and
k '—Ell._' H C 1.5 hours per load dryer simultaneously?
o . E 7 0.67 Ioads per hour —Need to have at least
r Throughput 2 people present all
g : 7 thetime?
vl | . fill i
‘D IIE’ 7 ;I.'lmet to“ Jll[p| E)el e|c?e and i .
« Sequential laundry takes 6 hours for 4 loads Imeto “drain It reduces
« If they learned pipelining, how long would laundry take? speedup
26/09/2001 Copyright Teemu Kerola 2001 9 26/09/2001 Copyright Teemu Kerola 2001 12

Chapter 11, CPU Structure and Function 2

Computer Organization |1

26/09/2001

2-stage Instruction Execution
Pipeline

» Good: instruction pre-fetch at the same time
as execution of previous instruction

» Bad: execution phaseislonger,
|.e., fetch stageis sometimesidle

» Bad: Sometimes (jump, branch) wrong
instruction isfetched
— every 6thinstruction?

* Not enough parallelism = more stages?

26/09/2001 Copyright Teemu Kerola 2001 13

Pipeline Execution Time

¢ Timeto execute oneinstruction (latency, seconds)

may be |onger than for non-pipelined machine
— extralatches to store intermediate results

¢ Timeto execute 1000 instructions (seconds) is
shorter (better) than that for non-pipelined
machineg, |.e,,
Throughput (instructions per second) for pipelined
machineis better (bigger) than that for
non-pipelined machine

« Isthisgood or bad? Why?

26/09/2001 Copyright Teemu Kerola 2001 16

Another Possible
Instruction Execution Pipeline

» FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
* FO - Fetch operands from memory

» El - Execute Instruction

* WO - Write operand (result) to memory

26/09/2001 Copyright Teemu Kerola 2001 14

Pipeline Speedup Problems

» Some stages are shorter than the others
 Dependencies between instructions

— control dependency
« E.g., conditional branch decision know only after El

stage

26/09/2001 Copyright Teemu Kerola 2001 17

Pipeline Speedup
No pipeline, 9 instructionsL 54 time units

6 stage pipeline, 9 instructions —— 14 time units

Speedup= Mg =54/14=386 <6!
TiMeney (nopeutus)
» Not every instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
— unused stage = CPU idle (execution “bubble”)

26/09/2001 Copyright Teemu Kerola 2001 15

Pipeline Speedup Problems
: K
» Dependencies between af?grvlvir:

instructions j S
— data dependency MUL RQZ‘,RS
« Oneinstruction depends
on data produced by LOAD RG’A"I?.@ &)
some earlier instruction Needed .~
— structural dependency inCostage |y
* Many instructions STORE RLVarX &
need the same resource '

ADD R2R3VaY
MUL R3R4R5 Y.
e FO

a the sametime
* memory bus, ALU, ...

26/09/2001 Copyright Teemu Kerola 2001 18

Chapter 11, CPU Structure and Function

Computer Organization |1

26/09/2001
Cycle Time I i Branch Problem Solutions
r=max[z]+d=r,+d >>d « Delayed Branch
) _ T Tmax gate delay in stage — compiler places some useful instructions
(min) cycletime (1 or more!) after branch (or jump) instructions
delay in latches between stages hese i . a letel
(= clock pulse, or clock cycle time) — these instructions are mOSt Comp etely
gate delay in stage i executed when branch decision is known
« Cycletimeisthe same for all stages — lessactua work lost
—time (in clock pulses) to execute the cycle — can be difficult to do
« Each stage executed in one cycle time
 Longest stage determines min cycle time
—max MHz rate for system clock
26/09/2001 Copyright Teemu Kerola 2001 19 26/09/2001 Copyright Teemu Kerola 2001 22
Pipeline Speedup Branch Probl. Solutions (contd) «
e n instructi(?gs k stagtlﬁ . » Multipleingtruction streams
n nstr on es = =
i e f S_“"F’e_ a = cydetime — execute speculatively in both directions
Time — ESNSRIEE (pessmistic because of « Problem: we do not know the branch target
not pipelined: |1 assuming that each stage address early!
would still have T cycle time) . - e . i .
— if one direction splits, continue each way again
Time T =lk+(n-Dlr — lots of hardware
pipelined: [Tk [()] « speculative results (registers!), control
K cycles until 1cyclefor — specul atlve.lnstructlorlws Tay delay real work
st instruction each of therest * bus& register contention?) .
completes (n-1) instructions —need to l_)e ablet_o cance not-taken instruction
streamsin pipeline
26/09/2001 Copyright Teemu Kerola 2001 20 26/09/2001 Copyright Teemu Kerola 2001 23

Pipeline Speedup « Branch Probl. Solutions (contd) ¢,
ninstructions, k stages

ninstructions, k stages T = stage delay = cycletime

* Prefetch Branch Target IBM 360/91 (1967)
Time — (pessimistic because of . . .
not pipelined: T,=nkT o ng that each stage — prefetch just branch target instruction
would still have T cycle time) —do not executeit, 1.e., do only FI stage
Time o — if branch take, no need to wait for memory
ipelined: [Tk = [k+(n-2r

pipel Loop Buffer
Speedup S< _ T1 _ nkr _ nk — Eeer;:]) n ngt) r?entlyf;tched instructionsin
with - = = igh sp uffer inside CPU

. +(n- +(n—
k stages: T [k (n 1)] r [k (n 1)] — works for small loops (at most n instructions)
26/09/2001 Copyright Teemu Kerola 2001 21 26/09/2001 Copyright Teemu Kerola 2001 24

Chapter 11, CPU Structure and Function

Computer Organization |1

26/09/2001

Branch Probl. Solutions (contd) ¢

Branch Prediction

— guess (intelligently) which way branch will go

— static prediction: al taken or all not taken
— static prediction based on opcode

« E.g., because BLE instruction is usually at the end
of loop, guess “taken”

— dynamic prediction taken/not taken

« based on previous time this instruction was executed

« need space (1 bit) in CPU for each (?) branch

« end of loop always wrong twice!

« extension based on two previous time execution
—need more space (2 hits)

CPU Example: PowerPC
+ User Visible Registers

— 32 general purpose regs, each 64 bits

» Exception reg (XER), 32 bits
Fig. 11.23a

— 32 FP regs, each 64 bits

— branch processing unit registers
« Condition, 32 bits
—8fields, each 4 bits
—identity given ininstructions
* Link reg, 64 bits
—E.g., return address

« FP status & control (FPSCR), 32 bits L1201€11.3

 Count regs, 64 bits
Fig. 11.16 —E.g., loop counter
26/09/2001 Copyright Teemu Kerola 2001 25 26/09/2001 Copyright Teemu Kerola 2001 28
Branch Address Prediction

* It isnot enough to know whether branch is
taken or not

* Must know also branch addressto fetch
target instruction
» Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU for each (?) branch
26/09/2001

Copyright Teemu Kerola 2001 26

CPU Example: PowerPC

* Interrupts
— cause
« system condition or event Table 11.5
* instruction

26/09/2001 Copyright Teemu Kerola 2001 29

Branch History Table

» Cached PowerPC 620

— entries only for most recent branches
« Branch instruction address, or tag bits for it
« Branch taken prediction bits (2?)
« Target address (from previous time) or complete
target ingtruction?

¢ Why cached

— expensive hardware, not enough space for al
possible branches

— at lookup time check first whether entry for
correct branch instruction

26/09/2001 Copyright Teemu Kerola 2001 27

CPU Example: PowerPC

* Machine State Register, 64 bits
— bit 48: external (1/0) interrupts enabled?
— bit 49: privileged state or not
— bits 52& 55: which FP interrupts enabled?
— bit 59: data address translation on/off
— bit 63: big/little endian mode
» Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

26/09/2001 Copyright Teemu Kerola 2001 30

Chapter 11, CPU Structure and Function

Computer Organization 11 26/09/2001

Power PC Interrupt Invocation
» Savereturn PC to SRRO

— current or next instruction at the time of interrupt
» Copy relevant areas of MSR to SRR1
¢ Copy additional interrupt info to SRR1
» Copy fixed new value into MSR
— different for each interrupt
— address trandlation off, disable interrupts
» Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
origina MSR

26/09/2001 Copyright Teemu Kerola 2001 31

Power PC Interrupt Return

 Return From Interrupt (rfi) instruction
— privileged

* Rebuild original MSR from SRR1

» Copy return address from SRRO to PC

26/09/2001 Copyright Teemu Kerola 2001 32

-- End of Chapter 11: CPU Structure --

) Ele Edt Document Ve

nesm oa b stage pipdined version of datapath (Fig. 6.12)
—— - H

emory

-l
(Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

26/09/2001 Copyright Teemu Kerola 2001 33

Chapter 11, CPU Structure and Function 6

