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Memory Management
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Hardware Support
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Virtual Memory (virtuaalimuisti
Ch7.3

* Problem: How can | make my (main)
memory as big as my disk drive?
» Answer: Virtual memory

— keep only most probably referenced datain
memory, and rest of it in disk
* disk ismuch bigger and slower than memory

* addressin machine instruction may be different
than memory address

* need to have efficient address mapping
* most of data references are for datain memory
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Other Problems Often Solved
with VM @A)

* |f you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

* What if a process needs more memory than
thereis?
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Memory Management Problem ()

» How much memory for each process?

—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary dynamically during the run time?

* How isthat memory managed?
* How isthat memory referenced?
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Partitioning
» How much physical memory for each
process? I
o L (Staattiset tai
o Static (fixed) partitioning | kiintest partitiot)
— amount of physical memory determined at
process creation time
— continuous memory allocation for partition
» Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesin time
* due to process requirements (of this process)

* dueto system (l.e., other processes) requirements
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Static Partitioning

» Equal size - give everybody the same
amount Fig. 7.14
— fixed size - big enough for everybody
— need more? Can not run!

— interna fragmentation (sisdinen pirstoutuminen)
* Unequal size

— external fragmentation (ulkoinen pirstoutuminen)
 Variablesize Fig. 7.15

— external fragmentation
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Dynamic Partitioning
Process must be able to run with different
amounts of main memory
— al of memory space is not in physical memory
New process?
— reduce amount of memory for some (lower

priority) processes

Not enough memory for some process?

— reduce amount of memory for some (lower
priority) processes

— kick (swap) out some (lower priority) process
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Address Mapping )  (ositteen muunnos)
Pascal, Java: Symbolic Assembler:
S / loop: LOAD RL, Y

X=X+, ADD R1,Z

Textual machine language: STORE R1, X

1312: LOAD R1, 2510 |Execution time:

ADD R1, 2514
STORE R1, 2600 |101312: LOAD R1,102510
ADD R1,102514
(addresses relative to 0) ADD  R1,102600
= (real, actual!)
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Address Mapping

logical address

Textual machine language:

1312: LOAD R1, 2510 +100000?

Execution time:
101312; LOAD R1,102510 or

101312: LOAD R1, 2510 ?7?
g physical address (constant?)
-Want: Rle— Mem[102510] or  Mem[2510] ?
- Who makes the mapping? When?
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Address Mapping ¢

» At program load time

— loader (lataaja)
— static address binding (steattinen
» At program execution time osoittetden sidonta)
—cpu
— with every instruction
— dynamic address binding (dynaaminen
— swapping osoittei den sidonta)

— virtual memory
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Sw appl Ng » (heittovaihto)
» Keep all memory areas for all running and
ready-to-run processes in memory

« New process

— find continuous memory partition and swap the
processin

Not enough memory?

— Swap some (lower priority) process out

» Some times can swap in only (runnable)
portions of one process

Address map: add base address
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VM Implementation

* Methods
—base and limit registers
— segmentation
—paging
—segmented paging
» Hardware support

—MMU - Memory Management Unit
* part of processor
* varies with different methods
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Base and Limit Registers
 Continuous memory partitions

— one or more (47?) per process
— may have separate base and limit registers
* code, data, shared data, etc
* by default, or given explicitly
« BASE and LIMIT registersin MMU
— all addresses|ogical in machine instructions
— address mapping for address (x):
 check: x <LIMIT
 physical address. BASE+X
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Segmentation

» Process address space divided into
(relatively large) logical segments

— code, data, shared data, large table, etc
Each logical segment is allocated its own
continuous physical memory segment
Externa fragmentation

Memory address have two fields

011001 1010110000
segment byte offset (lisays)
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Segmentation Address Mapping

» Segment table
— maps segment id to physical segment base
address and to segment size
» Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset
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Paging
» Process address space divided into
(relatively small) equal size pages
— address space division is not based on logical
entities, only on fixed size chunks
» Each pageis allocated its own physical

page frame in memory

— any page frame will do!
* Internal fragmentation

» Memory addresses have two fields
01100110 10110000
page byte offset | (lisays)
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Paged Address Mapping

» Pagetable
— maps page nr to physical page frame
» Physical address:
— find entry in page table
— physical address. page address + byte offset
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Paged Address Trandation
Virtual address Accesstype
1 (r)
Page table !
‘ Check access
register .
] rights
Xoag ri {rw}
1.
Check for 2
valid entry
Valid entry 14 30
Accessrights -
Page frame Physical address
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. Page Fault o2

Stop execution
Initiate reading Virtual address Aes&type

e 1 from disk 1 Lr
= Page table L Check
Schedule next register Page table riglifs access
process to run — : A

0710 rwx 65 ri {rw}
O interrupt ;W) G4
Page 1 read, Check for | 2 |1 ™W 35
update page table | valid entry:
process .
ready-to-run  Schedule orig. process again, Physical address
at the same instruction
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Paging

» Physical memory partitioning

— discontinuos areas
* Pagetables

— each process hasits own

— located in memory

— can bevery big

* entry for each page in address space

 Inverted pagetable

— entry for each pagein memory | Fig. 7.18

— less space, more complex hashed |ookup

Fig. 7.16
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Address Trandation g

MMU does it for every memory access

— code, data

— more than once per machine instruction!

 Can not access page tables in memory every
time - it would be too slow!
— too high cost to pay for virtual memory?

MMU has a cache of most recent address

trangations pres——
— TLB - Trandation Lookas de Buffer 'muunnos-
— 99.9% hit ratio? taulukko)
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Trandation Lookaside Buffer

e “Hit” on TLB? Fig. 7.19
— address trandationisin TLB - real fast
e “Miss’ on TLB?
— must read page table entry from memory
— takestime
— cpu waitsidle until it isdone
 Just like normal cache, but for address
mapping
— implemented just like cache
— instead of cache line data have physical address
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Memory Organisation ¢

Memory
CPU instr| | regs page
mem SEETg { table
2 i age
TLB " ., data o pag
T::_ca he ~ f,‘
P s 4 |
e e e - L |
|
]

page | page | page
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Physical address
OxO0B6C8E6 046

28

TLB Example ©6)

tag  index

4

ABOOC7D

A

Correct
address

mapping
found

* [

age of fset

ReadW 12, 0xABOOC7DA|046

tag

28

page frame
32

0000:

0111:

1000:

1001:

1010:

ABOOC7D

00OB6CB8E6
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— faster

TLB and Cache ©)

o Usually address trandlation first
and then cache lookup

» Cache can be based on virtual addresses
— can do TLB and cache lookup simultaneously

* |Implementations are very similar

— TLB often fully associative
* optimised for temporal locality
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Fig. 7.20
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TLB vs. Cache

TLB Miss
* CPU waitsidling
* HW implementation
* Invisible to process

» Dataiscopied from
memory to TLB
— from page table data
» Delay 4 (or 2 or 8?)
clock cycles

Cache Miss

» CPU waitsidling
HW implementation
Invisible to process

Datais copied from
memory to cache
« from page data

Delay 4 (or 2 or 8?)

clock cycles
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TLB Misses vs. Page Faults

TLB Miss

Page Fault

* CPU waitsidling

* HW implementation

» Dataiscopied from
memory to TLB

25.9.2000 Copyright Teemu Kerola 2000

* Delay 4 (?) B
clock cycles

» Processis suspended
and cpu executes
some other process

* SW implementation

» Datais copied from
disk to memory ﬁ

* Delay ‘

30 ms (?)
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Virtual Memory Policies ¢

Fetch policy (noutopolitiikka)

— demand paging: only when needed 1st time
— working set: keep those needed in memory
— prefetch: guess and start fetch early
Placement policy (sijoituspolitiikka)

— any frame for paged VM

Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process

— global, consider pages for all processes

— dirty pages must be written to disk | (likaiset,

25.9.2000 Copyright Teemu Kerola 2000 mUUtetUt)

Page Replacement Policy «

* Implemented in SW

 HW support
— extra bitsin each page frame
— M = Modified
— R = Referenced
* set (to 1) with each reference to frame
* reset (to 0) every now and then
— special (privileged) instruction from OS
—automatically (E.g., every 10 ms)
— Other counters?
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* OPT - optimal
NRU - not recently used

FIFO - first in first out

— 2nd chance

— clock

Random

LRU - least recently used
— complex counter needed
NFU - not frequently used
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Page Replacement Policies ¢

(sivunpoisto-

algoritmit)

(O]
Virtual Memory
Management

31

Thrashing

» Too high mpl
— E.g., only 10007 20007

— Lessthan its working set

— page fault
— process switch
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» Too few page frames per process

» Once aprocessis scheduled, it will
very soon reference a page not in memory
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Trashi ng (ruuhkautuminen)
A
cPU 10 ¢
utilization K
(kayttosuhde) CPU 100% busy
1 Swapping processes!
Higher mpl No real work is done!
P lessphysical
memory (moniajoaste)
er process! - : i : —
= 4 8 12
mpl (multiprogramming level)
- How much memory per process?
- How much memory is needed?
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Page Fault Frequency (PFF)

Dynamic Memory Allocation

* Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages
» At every page fault
— T=Time since previous page fault
—if T<L then give more memory
* 1 page frame? 4 page frames?
—if U<T then take some memory away
* 1 page frame?
—if L<T<U then keep current allocation
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VM Summary 5)

How to partition memory?

— Static or dynamic size (amount)

How to allocate memory

— Static or dynamic location
Address mapping

HW help (TLB) for address trandlation
— before or concurrently with cache access?
VM policies

— fetch, placement, replacement
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-- End of Chapter 7.3:Virtual Memory
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=L || direct
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instruction TLB .
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256line(each32B) —@ulc |5 —=F = data cache
instruction cache T - |
e ) ':-“ml'ﬁ' 1 :
o | SSH 1 | .7 main memory
2MB, 64K line (each 32B) - | = = o
direct mapped, unified, L= T = J
write-back L2 cache : :
25.9.2000 Copyright Teemu Kerola 2000 pag| ng disk (dma)

Chapter 7.3, Virtual Memory

25.9.2000

18



