Computer Organization |1 25.9.2000

Virtua Memory (VM)
Ch7.3

Memory Management
Address Trandation
Paging

Hardware Support
VM and Cache

25.9.2000 Copyright Teemu Kerola 2000 1

Teemu’ s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you

are baking...
_ Europa
refridge- (Jupiter)
table
=
S |
1 sec . 3 |
0.5 sec (cache) 10 sec ﬁ*ﬂé&-a?s y B
register memor) years
(reg) (Y) (disk) (tape)

25.9.2000

Copyright Teemu Kerola 2000

Chapter 7.3, Virtual Memory

Computer Organization |1 25.9.2000

Virtual Memory (virtuaalimuisti
Ch7.3

* Problem: How can | make my (main)
memory as big as my disk drive?
» Answer: Virtual memory

— keep only most probably referenced datain
memory, and rest of it in disk
* disk ismuch bigger and slower than memory

* addressin machine instruction may be different
than memory address

* need to have efficient address mapping
* most of data references are for datain memory

25.9.2000 Copyright Teemu Kerola 2000 3

Other Problems Often Solved
with VM @A)

* |f you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

* What if a process needs more memory than
thereis?

25.9.2000 Copyright Teemu Kerola 2000 4

Chapter 7.3, Virtual Memory 2

Computer Organization |1 25.9.2000

Memory Management Problem ()

» How much memory for each process?

—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary dynamically during the run time?

* How isthat memory managed?
* How isthat memory referenced?

25.9.2000 Copyright Teemu Kerola 2000 5

Partitioning
» How much physical memory for each
process? I
o L (Staattiset tai
o Static (fixed) partitioning | kiintest partitiot)
— amount of physical memory determined at
process creation time
— continuous memory allocation for partition
» Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesin time
* due to process requirements (of this process)

* dueto system (l.e., other processes) requirements
25.9.2000 Copyright Teemu Kerola 2000 6

Chapter 7.3, Virtual Memory 3

Computer Organization |1 25.9.2000

Static Partitioning

» Equal size - give everybody the same
amount Fig. 7.14
— fixed size - big enough for everybody
— need more? Can not run!

— interna fragmentation (sisdinen pirstoutuminen)
* Unequal size

— external fragmentation (ulkoinen pirstoutuminen)
 Variablesize Fig. 7.15

— external fragmentation

25.9.2000 Copyright Teemu Kerola 2000 7

Dynamic Partitioning
Process must be able to run with different
amounts of main memory
— al of memory space is not in physical memory
New process?
— reduce amount of memory for some (lower

priority) processes

Not enough memory for some process?

— reduce amount of memory for some (lower
priority) processes

— kick (swap) out some (lower priority) process

25.9.2000 Copyright Teemu Kerola 2000 8

Chapter 7.3, Virtual Memory 4

Computer Organization |1 25.9.2000

Address Mapping) (ositteen muunnos)
Pascal, Java: Symbolic Assembler:
S / loop: LOAD RL, Y

X=X+, ADD R1,Z

Textual machine language: STORE R1, X

1312: LOAD R1, 2510 |Execution time:

ADD R1, 2514
STORE R1, 2600 |101312: LOAD R1,102510
ADD R1,102514
(addresses relative to 0) ADD R1,102600
= (real, actual!)
25.9.2000 Copyright Teemu Kerola 2000 9
Address Mapping

logical address

Textual machine language:

1312: LOAD R1, 2510 +100000?

Execution time:
101312; LOAD R1,102510 or

101312: LOAD R1, 2510 ?7?
g physical address (constant?)
-Want: Rle— Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

25.9.2000 Copyright Teemu Kerola 2000 10

Chapter 7.3, Virtual Memory 5

Computer Organization |1 25.9.2000

Address Mapping ¢

» At program load time

— loader (lataaja)
— static address binding (steattinen
» At program execution time osoittetden sidonta)
—cpu
— with every instruction
— dynamic address binding (dynaaminen
— swapping osoittei den sidonta)

— virtual memory

25.9.2000 Copyright Teemu Kerola 2000 11

Sw appl Ng » (heittovaihto)
» Keep all memory areas for all running and
ready-to-run processes in memory

« New process

— find continuous memory partition and swap the
processin

Not enough memory?

— Swap some (lower priority) process out

» Some times can swap in only (runnable)
portions of one process

Address map: add base address

25.9.2000 Copyright Teemu Kerola 2000 12

Chapter 7.3, Virtual Memory 6

Computer Organization |1 25.9.2000

VM Implementation

* Methods
—base and limit registers
— segmentation
—paging
—segmented paging
» Hardware support

—MMU - Memory Management Unit
* part of processor
* varies with different methods

25.9.2000 Copyright Teemu Kerola 2000 13

Base and Limit Registers
 Continuous memory partitions

— one or more (47?) per process
— may have separate base and limit registers
* code, data, shared data, etc
* by default, or given explicitly
« BASE and LIMIT registersin MMU
— all addresses|ogical in machine instructions
— address mapping for address (x):
 check: x <LIMIT
 physical address. BASE+X

25.9.2000 Copyright Teemu Kerola 2000 14

Chapter 7.3, Virtual Memory 7

Computer Organization |1 25.9.2000

Segmentation

» Process address space divided into
(relatively large) logical segments

— code, data, shared data, large table, etc
Each logical segment is allocated its own
continuous physical memory segment
Externa fragmentation

Memory address have two fields

011001 1010110000
segment byte offset (lisays)

25.9.2000 Copyright Teemu Kerola 2000 15

Segmentation Address Mapping

» Segment table
— maps segment id to physical segment base
address and to segment size
» Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset

25.9.2000 Copyright Teemu Kerola 2000 16

Chapter 7.3, Virtual Memory 8

Computer Organization |1 25.9.2000

Paging
» Process address space divided into
(relatively small) equal size pages
— address space division is not based on logical
entities, only on fixed size chunks
» Each pageis allocated its own physical

page frame in memory

— any page frame will do!
* Internal fragmentation

» Memory addresses have two fields
01100110 10110000
page byte offset | (lisays)

25.9.2000 Copyright Teemu Kerola 2000 17

Paged Address Mapping

» Pagetable
— maps page nr to physical page frame
» Physical address:
— find entry in page table
— physical address. page address + byte offset

25.9.2000 Copyright Teemu Kerola 2000 18

Chapter 7.3, Virtual Memory 9

Computer Organization |1

Paged Address Trandation
Virtual address Accesstype
1 (r)
Page table !
‘ Check access
register .
] rights
Xoag ri {rw}
1.
Check for 2
valid entry
Valid entry 14 30
Accessrights -
Page frame Physical address
25.9.2000 Copyright Teemu Kerola 2000 19

. Page Fault o2

Stop execution
Initiate reading Virtual address Aes&type

e 1 from disk 1 Lr
= Page table L Check
Schedule next register Page table riglifs access
process to run — : A

0710 rwx 65 ri {rw}
O interrupt ;W) G4
Page 1 read, Check for | 2 |1 ™W 35
update page table | valid entry:
process .
ready-to-run Schedule orig. process again, Physical address
at the same instruction
25.9.2000 Copyright Teemu Kerola 2000 20

Chapter 7.3, Virtual Memory

25.9.2000

10

Computer Organization |1

Paging

» Physical memory partitioning

— discontinuos areas
* Pagetables

— each process hasits own

— located in memory

— can bevery big

* entry for each page in address space

 Inverted pagetable

— entry for each pagein memory | Fig. 7.18

— less space, more complex hashed |ookup

Fig. 7.16

25.9.2000 Copyright Teemu Kerola 2000 21

Address Trandation g

MMU does it for every memory access

— code, data

— more than once per machine instruction!

 Can not access page tables in memory every
time - it would be too slow!
— too high cost to pay for virtual memory?

MMU has a cache of most recent address

trangations pres——
— TLB - Trandation Lookas de Buffer 'muunnos-
— 99.9% hit ratio? taulukko)

25.9.2000 Copyright Teemu Kerola 2000 22

Chapter 7.3, Virtual Memory

25.9.2000

11

Computer Organization |1

Trandation Lookaside Buffer

e “Hit” on TLB? Fig. 7.19
— address trandationisin TLB - real fast
e “Miss’ on TLB?
— must read page table entry from memory
— takestime
— cpu waitsidle until it isdone
 Just like normal cache, but for address
mapping
— implemented just like cache
— instead of cache line data have physical address

25.9.2000 Copyright Teemu Kerola 2000 23

Memory Organisation ¢

Memory
CPU instr| | regs page
mem SEETg { table
2 i age
TLB " ., data o pag
T::_ca he ~ f,‘
P s 4 |
e e e - L |
|
]

page | page | page

25.9.2000 Copyright Teemu Kerola 2000 24

Chapter 7.3, Virtual Memory

25.9.2000

12

Computer Organization |1

Physical address
OxO0B6C8E6 046

28

TLB Example ©6)

tag index

4

ABOOC7D

A

Correct
address

mapping
found

* [

age of fset

ReadW 12, 0xABOOC7DA|046

tag

28

page frame
32

0000:

0111:

1000:

1001:

1010:

ABOOC7D

00OB6CB8E6

25.9.2000 Copyright Teemu Kerola 2000

25

— faster

TLB and Cache ©)

o Usually address trandlation first
and then cache lookup

» Cache can be based on virtual addresses
— can do TLB and cache lookup simultaneously

* |Implementations are very similar

— TLB often fully associative
* optimised for temporal locality

25.9.2000 Copyright Teemu Kerola 2000

Fig. 7.20

26

Chapter 7.3, Virtual Memory

25.9.2000

13

Computer Organization |1

TLB vs. Cache

TLB Miss
* CPU waitsidling
* HW implementation
* Invisible to process

» Dataiscopied from
memory to TLB
— from page table data
» Delay 4 (or 2 or 8?)
clock cycles

Cache Miss

» CPU waitsidling
HW implementation
Invisible to process

Datais copied from
memory to cache
« from page data

Delay 4 (or 2 or 8?)

clock cycles

25.9.2000 Copyright Teemu Kerola 2000 27

TLB Misses vs. Page Faults

TLB Miss

Page Fault

* CPU waitsidling

* HW implementation

» Dataiscopied from
memory to TLB

25.9.2000 Copyright Teemu Kerola 2000

* Delay 4 (?) B
clock cycles

» Processis suspended
and cpu executes
some other process

* SW implementation

» Datais copied from
disk to memory ﬁ

* Delay ‘

30 ms (?)

Chapter 7.3, Virtual Memory

25.9.2000

14

Computer Organization |1

Virtual Memory Policies ¢

Fetch policy (noutopolitiikka)

— demand paging: only when needed 1st time
— working set: keep those needed in memory
— prefetch: guess and start fetch early
Placement policy (sijoituspolitiikka)

— any frame for paged VM

Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process

— global, consider pages for all processes

— dirty pages must be written to disk | (likaiset,

25.9.2000 Copyright Teemu Kerola 2000 mUUtetUt)

Page Replacement Policy «

* Implemented in SW

 HW support
— extra bitsin each page frame
— M = Modified
— R = Referenced
* set (to 1) with each reference to frame
* reset (to 0) every now and then
— special (privileged) instruction from OS
—automatically (E.g., every 10 ms)
— Other counters?

25.9.2000 Copyright Teemu Kerola 2000 30

Chapter 7.3, Virtual Memory

25.9.2000

15

Computer Organization |1

* OPT - optimal
NRU - not recently used

FIFO - first in first out

— 2nd chance

— clock

Random

LRU - least recently used
— complex counter needed
NFU - not frequently used

25.9.2000 Copyright Teemu Kerola 2000

Page Replacement Policies ¢

(sivunpoisto-

algoritmit)

(O]
Virtual Memory
Management

31

Thrashing

» Too high mpl
— E.g., only 10007 20007

— Lessthan its working set

— page fault
— process switch

25.9.2000 Copyright Teemu Kerola 2000

» Too few page frames per process

» Once aprocessis scheduled, it will
very soon reference a page not in memory

32

Chapter 7.3, Virtual Memory

25.9.2000

16

Computer Organization |1 25.9.2000

Trashi ng (ruuhkautuminen)
A
cPU 10 ¢
utilization K
(kayttosuhde) CPU 100% busy
1 Swapping processes!
Higher mpl No real work is done!
P lessphysical
memory (moniajoaste)
er process! - : i : —
= 4 8 12
mpl (multiprogramming level)
- How much memory per process?
- How much memory is needed?
25.9.2000 Copyright Teemu Kerola 2000 33
Page Fault Frequency (PFF)

Dynamic Memory Allocation

* Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages
» At every page fault
— T=Time since previous page fault
—if T<L then give more memory
* 1 page frame? 4 page frames?
—if U<T then take some memory away
* 1 page frame?
—if L<T<U then keep current allocation

25.9.2000 Copyright Teemu Kerola 2000 34

Chapter 7.3, Virtual Memory 17

Computer Organization |1

VM Summary 5)

How to partition memory?

— Static or dynamic size (amount)

How to allocate memory

— Static or dynamic location
Address mapping

HW help (TLB) for address trandlation
— before or concurrently with cache access?
VM policies

— fetch, placement, replacement

25.9.2000 Copyright Teemu Kerola 2000 35

-- End of Chapter 7.3:Virtual Memory
ﬂ : =T

Fig. 5.47 from i i —1
Hennessy-Patterson, i T3 -‘ ki Fully assoc,
Computer Architecture 32 entry
Alpha AXP 21064 |, 225 L2
memory hierarchy =
=L || direct
Fully assoc, 12 entry mapped
instruction TLB .
' ; | A= . ‘ 256 line
8 KB, direct mapped, ‘“—furEﬁ_| ol e (each 32B)
256line(each32B) —@ulc |5 —=F = data cache
instruction cache T - |
e) ':-“ml'ﬁ' 1 :
o | SSH 1 | .7 main memory
2MB, 64K line (each 32B) - | = = o
direct mapped, unified, L= T = J
write-back L2 cache : :
25.9.2000 Copyright Teemu Kerola 2000 pag| ng disk (dma)

Chapter 7.3, Virtual Memory

25.9.2000

18

