3

ing

‘Address Trandation
Pag

‘Hardware Support
VM and Cache

-Memory Management

e i gl
: Ao
i |

s iy
s Y

dmad

Copyright Teemu Kerola 2000

VR

=
.
-
e
5
=
C
=
=

s e

ks

P e

Ay -|1'\‘-|:-1--
[

25.9.2000

| Teemu's Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you
are baking...

| Europa
refridge- (Jupiter)

hand rator
table .

|

I--ID

Lo~

4
\ A\
0.5 sec
(register) (memory)

LT T |

B

1 sec
(cache)

10 sec
12 days

(disk)

25.9.2000 Copyright Teemu Kerola 2000

Virtual Memory |Wikiasimuis)
Ch 7.3

* Problem: How can | make my (main)
memory as big as my disk drive?

o Answer: Virtual memory

— keep only most probably referenced data in
memory, and rest of it in disk
e disk is much bigger and slower than memory

 address in machine instruction may be different
than memory address

 need to have efficient address mapping
e most of datareferences are for datain memory

4 2592000 Copyright Teemu Kerola 2000

Other Problems Often Solved
with VM (3)

If you must want to have many processes in
memory at the same time, how do you keep
track of memory usage?

How do you prevent one process from
touching another process memory areas?

« \What If aprocess needs more memory than
thereis?

25.9.2000 Copyright Teemu Kerola 2000

Memory Management Problem

 How much memory for each process?
— Isit fixed amount during the process run time
or can it vary during the run time?

e \WWhere should that memory be?

— In acontinuous or discontinuous area?

— Isthe location the same during the run time
or can it vary dynamically during the run time?

q”ls“ 25.9.2000 Copyright Teemu Kerola 2000
A

Partitioni Ng @)
How much physical memory for each

Process? —
- e (Staattiset tai
Static (fixed) partitioning | kiintest partitiot)
— amount of physical memory determined at
process creation time
- —continuous memory allocation for partition
 Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesin time
 due to process reguirements (of this process)
* dueto system (l.e., other processes) requirements

4 2592000 Copyright Teemu Kerola 2000

Static Partitioning

* Equal size - give everybody the same
amount Fig. 7.14
— fixed size - big enough for everybody
— need more? Can not run!
— internal fragmentation (§siinen pirstoutuminen)
 Unequal size
— external fragmentation |(ulkeinen pirstoutuminen)
Variable size Fig. 7.15
— external fragmentation

=,f* 25.9.2000 Copyright Teemu Kerola 2000

Dynamic Partitioning @

e Process must be able to run with different
amounts of main memory

— all of memory space isnot in physical memory
 New process?

— reduce amount of memory for some (lower
priority) processes

* Not enough memory for some process?

— reduce amount of memory for some (lower
priority) processes

— kick (swap) out some (lower priority) process

Copyright Teemu Kerola 2000

AddreSS |\/| appl ng (4) (Osoitteen muunnos)

Pascal, Java:

Symbolic Assembler:
= |

while (....) / loop: LOAD
X:=Y+Z; ADD

Textual machine language: STORE

1312: LOAD R1, 2510 || Execution time:

ADD R1, 2514
STORE R1 2600 101312: LOAD R1,102510

ADD R1,102514
addresses relative to 0) ADD R1,102600

-‘f‘ii.sf::
N (real, actual!)

Copyright Teemu Kerola 2000

Address Mapping

logical address

Textual machine language:

1312: LOAD R1, 2510 +100000?

Execution time;
101312: LOAD R1,102510 or

101312: LOAD R1, 2510 77
_ physical address (constant?)

- Want: Rl< Mem[102510] or Mem[2510]?
- Who makes the mapping? When?

e
4 o
AL

58

- ‘.. e
34

Sares

g =.--1

25.9.2000 Copyright Teemu Kerola 2000

Address Mapping ¢

e At program load time
_ loader (EEZE)
— static address binding (Staattinen
: : osoitteiden sidonta)
e At program execution time
— cpu
— with every instruction

— dynamic address binding (dynaa_mi nen
_ swapping 0soi tteiden sidonta)

— virtual memory

25.9.2000 Copyright Teemu Kerola 2000

Swappi NQg » [(heitiovainto)

Keep all memory areas for all running and
ready-to-run processes in memory

New process

— find continuous memory partition and swap the
Process in

Not enough memory?
— Swap some (lower priority) process out

Some times can swap in only (runnable)
portions of one process

 + Address map: add base address

0 25.9.2000 Copyright Teemu Kerola 2000

VM Implementation

* Methods
—base and limit registers
— segmentation

—paging

— segmented paging
* Hardware support
—MMU - Memory Management Unit
e part of processor
e varies with different methods

25.9.2000 Copyright Teemu Kerola 2000

Base and Limit Registers

e Continuous memory partitions
— one or more (47?) per process

— may have separate base and limit registers
e code, data, shared data, etc
by default, or given explicitly

"« BASE and LIMIT registersin MMU
— all addresses logical in machine instructions
— address mapping for address (X):
e check: X <LIMIT
e physical address. BASE+X

_H 25.9.2000 Copyright Teemu Kerola 2000

Segmentation

Process address space divided into
(relatively large) logical segments

— code, data, shared data, large table, etc
Each logical segment is allocated its own

continuous physical memory segment
External fragmentation

Memory address have two fields

011001 1010110000
segment byte offset (lisdys)

Copyright Teemu Kerola 2000

Segmentation Address Mapping

o Segment table
— maps segment id to physical segment base
address and to segment size
* Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset

25.9.2000 Copyright Teemu Kerola 2000

Paging

Process address space divided into

(relatively small) equal size pages

— address space division is not based on logical
entities, only on fixed size chunks

Each page is allocated its own physical

page frame in memory
— any page frame will do!

Internal fragmentation

Memory addresses have two fields
01100110 10110000
page byte offset [(lISayS)

Copyright Teemu Kerola 2000

page address + byte offset

Copyright Teemu Kerola 2000

2
3
)
=
¢
S
<
3
g

— maps page nr to physical page frame

* Physical address
— find entry in page table

— physical address

e Pagetable

Ap P b B
--\.-r‘.h HFLES

~ita

T e

Paged Address Trandation

Virtual address Accesstype

_N

1 30;

Page table
: Check access
register Page table rights

g 0 rwx 65) (T {rw)
Check for 4%

1‘I’W’@E
1 rw 55

videnry| /Bl

Valid entry / 14 30

Accessrights ;
Page frame Physical address

e
4 o
AL

58

- ‘.. e
34

Sares

g =.--1

25.9.2000 Copyright Teemu Kerola 2000

Page fault Interrupt
= Page Fault ¢
u Stop execution

’ |nitiate reading Virtual address Accesstype

e 1 from disk 1 30+ r]
P = Page table - ’\

Schedule next register Page table
proc&ss to run

Check access
rights
0 rwx 65 rl {rw}

I/Olnterrupt N ~T4) i

v

Page 1 read, Check for
update pagetable |yalid entry:

Make orig. not valid! 14 30

- process .
ready-to-run Schedule orig. process again, AEIEE] EoiliEs

;‘ i at the same Instruction

_H 25.9.2000 Copyright Teemu Kerola 2000

Paging
Physical memory partitioning
— discontinuos areas
Page tables

— each process has its own
— located in memory

— can be very big
 entry for each page in address space

Inverted page table
— entry for each pagein memory |Fig. 7.18
— less space, more complex hashed [ookup

25.9.2000 Copyright Teemu Kerola 2000

A - e i
i Y i D
{'r':l '-.-I'l\.""u"‘fl v

Address Trandation ¢

e MMU does it for every memory access
— code, data
— more than once per machine instruction!

« Can not access page tables in memory every

time - it would be too slow!
— too high cost to pay for virtual memory?

* MMU has a cache of most recent address
translations (osoitteen-
— TLB - Trandation Lookaside Buffer /muunnos-
_ 99.9% hit ratio? taiuikko)

q”ls“ 25.9.2000 Copyright Teemu Kerola 2000
A

Trand ation Lookaside Buffer ¢

“Hit” on TLB? Fig. 7.19
— addresstrandation isin TLB - real fast
“Miss’ on TLB?

— must read page table entry from memory

— takes time

— cpu waitsidle until it is done
Just ltke normal cache, but for address
mapping

— Implemented just like cache

— Instead of cache line data have physical address

7 2592000 Copyright Teemu Kerola 2000 23
e

Memory Organisation @
- Memory

INstr || regs

page
1table

mem jaddiy ;
TLB cat
Y

Lcache

—

T
\

page
1table

~

25.9.2000 Copyright Teemu Kerola 2000

page | page

TLB Example ¢

= OxOOBO6CB8E6 046 <—

¢ —page offset

. 0000:
tag Index

28 4
ABOOC/D |A

0111:
11000
1001

ReadW 12, OXABOOC7DA|046| tag
28

page frame
32

~— 1010:

T
iy
el

ST,
Lt

58

— ABOOC7D

. 00OB6CSE6

J

/

Sares

g =.--1

o b
g} g SEEE-E e

25.9.2000 Copyright Teemu Kerola 2000

TLB and Cache (3)

Usually address translation first
and then cache lookup
Cache can be based on virtual addresses
— can do TLB and cache lookup simultaneously
— faster
e Implementations are very similar

— TLB often fully associative
 optimised for temporal locality

Fig. 7.20

25.9.2000 Copyright Teemu Kerola 2000

TLB vs. Cache

TLB Miss Cache Miss

CPU walitsidling CPU waitsidling
HW implementation | |« HW implementation
nvisible to process Invisibleto process

Datais copied from Data is copied from
memory to TLB memory to cache

— from page table data from page data
Delay 4 (or 2 or 8?) Delay 4 (or 2 or 8?)
clock cycles clock cycles

._Mf:i 25.9.2000 Copyright Teemu Kerola 2000

TLB Missesvs. Page Faults
TLB Miss Page Fault

 CPU waitsidling e Processis suspended
and cpu executes
some other process

HW implementation | [« SW implementation

Dataiscopied from ||e Datais copied from
memory to TLB disk to memory
Delay 4 (?) 2 Delay

clock cycl 30 ms (?)

”*‘ 25.9.2000 Copyright Teemu Kerola 2000

b
=T
FrL
el
i

Virtua Memory Policies

Fetch policy (noutopolitiikka)
— demand paging: only when needed 1st time
— working set: keep those needed in memory

— prefetch: guess and start fetch early

Placement policy (sijoituspolitiikka)
— any frame for paged VM

 Replacement policy (poistopolitiikka)
— local, consider pages just for this process
— global, consider pages for all processes
— dirty pages must be written to disk [(likaiSet;

25.9.2000 Copyright Teemu Kerola 2000 muutetut) o

Page Replacement Policy

e Implemented in SW

e HW support
— extra bits in each page frame
— M = Modified
— R = Referenced

» et (to 1) with each reference to frame
e reset (to 0) every now and then
—gpecial (privileged) instruction from OS
—automatically (E.g., every 10 ms)
— Other counters?

95.9.2000 Copyright Teemu Kerola 2000

Page Replacement Policies ¢

OPT - optimal
NRU - not recently used

FIFO - first in first out
— 2nd chance
— clock

Random

LRU - least recently used
— complex counter needed

 NFU - not frequently used

95.9.2000 Copyright Teemu Kerola 2000

(slvunpoisto-
algoritmit)

OS
Virtua Memory
M anagement

Thrashing

e Too high mpl

» Too few page frames per process
— E.g., only 10007 20007
— Less than its working set

e Once aprocessisscheduled, it will
Very soon reference a page not in memory

— page fault
— process switch

95.9.2000 Copyright Teemu Kerola 2000

Trashi Ng (ruuhkautuminen)

CPU 10 ¢
‘ utilization K
+? (kayttosuhde) CPU 100% busy
= Sswapping processes!
No rea work is done!

memory (moniajoaste)

' er process! : | | | —»
LDep A 3 12

mpl (multiprogramming level)

- How much memory per process?
- How much memory is needed?

4 2592000 Copyright Teemu Kerola 2000

Page Fault Frequency (PFF)
Dynamic Memory Allocation

e Two bounds: L=Lower and U=Upper
e Physical memory split into fixed size pages
o At every page fault

— T=Time since previous page fault

—If T<L then give more memory
* 1 page frame? 4 page frames?

—If U<T then take some memory away
1 page frame?

—If L<T<U then keep current allocation

Copyright Teemu Kerola 2000

\VA\Y/ Summary (5)

How to partition memory?
— Static or dynamic size (amount)

How to allocate memory
— Static or dynamic location

Address mapping
HW help (TLB) for address translation
— before or concurrently with cache access?
VM policies
— fetch, placement, replacement

e
4 o
AL

58

gtk ey
g} g SEEE-E e

Sares

g =.--1

25.9.2000 Copyright Teemu Kerola 2000

£ 0
eSSV -Patterso
) A)
A »
@,
U ol O
ASSU
0 »
5. QITE
2 (Cc
0 o
5. 04 .
e 000

U U JLE C
Page-tame Pag= CPU Data page-fame Pags
addrem=s <30 atsse 13 address <30 gl
R Irmiucian 64> Dai Oul <G4 Dada n «<Gd=
T I
prpn) Y T & mer il T TR =
i W AW Ty Phyleladde= i W AW Tag Phyeladdr==
T B T kY
Lo <t L
B 8
[1] | I
T
{Hgh-arder 21 Hiz i @ 1241 hium {Hgh-arder 21 His ol
Physical sddmes) o I—!—I Fhysical addvess] o
: Qe @ - @S
g 5 -:E:-+ 0
hd=x Hack Ind=x Iﬂud(Deayp=d wril= buti=r
atksed o attsed
A (255 Wald Tag OE: 6) & (256 valld T Catr @
e b <12 <21 «Bdx e Bagm) <1x_«2i= «Eicke
H @ |5
: ® : @

i —

T In=hruslan pred=ich sikeam bufler
[a2
®-? Tag <29 Dot <258
l’&’l—'@.
@
4:1 Wux
Alpha AXP 21064
¥ D T Dala
«13x 3 <8 RSt (Eﬁb@ [LE) |
Tag hd=x
L2
: e
D c (85 538 @ meTary
[) bladks)

. .k. .

Ragneis
disk

ASSO
A
[J
Udlo »
0 »
® »
a

. ()
~ D
A D
. CALC @,
ol 110
@,
S 0 O

