
Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 1

116/10/2000 Copyright Teemu Kerola 2000

Micro-programmed Control
Ch 15

Micro-instructions
Micro-programmed Control Unit

Sequencing
Execution

Characteristics

216/10/2000 Copyright Teemu Kerola 2000

Hardwired Control (4)

• Complex
• Fast
• Difficult to design
• Difficult to modify

– Lots of optimization done at implementation
phase

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 2

316/10/2000 Copyright Teemu Kerola 2000

Micro-programmed Control (3)

• Implement “execution engine” inside CPU
– execute one micro-instruction at a time

• What to do now?
– micro-instruction

• control signals

– stored in micro-instruction control memory
• micro-program, firmware

• What to do next?
– micro-instruction program counter

• default (?): next micro- instruction
• jumps or branches?

416/10/2000 Copyright Teemu Kerola 2000

Machine Instructions
vs. Micro-instructions

Memory

execution
unit

CPU

LOAD
ADD
MULT

Machine
instructions
define
a program

Micro-
instructions
define
machine
instructions
(processor
architecture!)

Memop R2,A1
ALU-op R1,R2
jump fetch

control
memory

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 3

516/10/2000 Copyright Teemu Kerola 2000

Machine Instructions
vs. Micro-instructions (2)

• Machine instruction fetch-execute cycle
produces machine instructions to be
executed at CPU

• Micro-instruction fetch-execute cycle
produces control signals for data path

616/10/2000 Copyright Teemu Kerola 2000

Micro-program (4)

• Stored in control memory
• ROM, PROM, EPROM
• One “subroutine” for each machine

instruction
– one or more micro-instructions

• Defines architecture
– change instruction set?

⇒ reload control memory

Fig. 15.2

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 4

716/10/2000 Copyright Teemu Kerola 2000

Hardwired vs. Micro-program
Control

Initial
represent.:

Sequencing
control:
Logic
represent.:

Implem.:

Finite
state

diagram
Explicit
next state
function

Logic
equations

PLA

Micro-
program

Micro-
program
counter

Truth
tables

ROM

Pure hardwired Pure micro-programmed

816/10/2000 Copyright Teemu Kerola 2000

Microcode (3)

• Horizontal micro-code
– control signals directly in micro-code
– all control signals always there
– lots of signals ⇒ many bits in micro- instruction

• Vertical micro-code
– each action encoded densely
– actions need to be decoded to signals at execution time
– takes less space but may be slower

• Each micro-instruction is also a conditional
branch?

Fig. 15.1 (a)

Fig. 15.1 (b)

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 5

916/10/2000 Copyright Teemu Kerola 2000

Micro-programmed
Control Unit (4)

• Control Address Register
– “micro-program PC”

• Control Memory
• Control Buffer Register

– current micro-instruction
• control signals
• next address control

• Sequencing logic
– select next value for Control Address Reg

Fig. 15.4

1016/10/2000 Copyright Teemu Kerola 2000

Micro-programming (3)

• Simple design
• Flexible

–adapt to changes in organization, timing,
technology

–make changes late in design cycle, or even in
the field

• Very powerful instruction sets
–use bigger control memory if needed
–easy to have complex instruction sets

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 6

1116/10/2000 Copyright Teemu Kerola 2000

Micro-programming (2)

• Generality
– multiple instruction sets on same machine
– tailor instruction set to application?

• Compatibility
– easy to be backward compatible in one family
– many organizations, same instruction set

1216/10/2000 Copyright Teemu Kerola 2000

Micro-programming (2)

• Costly to implement
– need tools:

• micro-program development environment
• micro-program compiler

• Slow
– micro-instruction interpreted at execution time
– interpretation is internal to CPU
– interpret one instruction at a time

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 7

1316/10/2000 Copyright Teemu Kerola 2000

RISC vs. Micro-programming (8)

• Simple instructions can execute at very high clock rate
• Compilers can produce micro-instructions

– machine dependent optimization
• Use only simple instructions and addressing mode
• Keep “micro-code” in RAM instead of ROM
• no micro- instruction interpretation logic needed
• Fast access to “micro-code” in RAM via caching
• Skip instruction interpretation of a micro-program and

simply compile directly into lowest language of machine?

• ⇒ Compile to “micro-code” and use hardwired control
for RISC

1416/10/2000 Copyright Teemu Kerola 2000

Micro-program Sequencing (3)

• Two address format
– default next micro-instruction address

• waste of space most of the time?

– conditional branch address

• One address format
– (Conditional) branch address

• Variable format
– only branch micro-instructions have addresses
– waste of time many times?

Fig. 15.6

Fig. 15.7

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 8

1516/10/2000 Copyright Teemu Kerola 2000

Micro-instruction Explicit
Address Generation

• Addresses explicitly present
– Two-field

• select one of them

– Unconditional branch
• jump to this one

– Conditional branch
• select this one or default

1616/10/2000 Copyright Teemu Kerola 2000

Micro-instruction Implicit
Address Generation

• Addresses not explicitly present
– Mapping

• map opcode in machine instruction into micro-
instruction address

– Addition
• higher order bits directly from opcode
• lower order bits based on current status and tag bits,

or fields in current microinstruction

– Residual Control
• return from micro-program subroutine

Fig. 15.9

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 9

1716/10/2000 Copyright Teemu Kerola 2000

Micro-instruction Encoding

• Usually a compromise between pure
horizontal and vertical formats
– optimize on space with encoding multiple

signals into a set of fields
• each field defines control signals for certain separate

actions
• mutually exclusive actions are encoded into the

same field

– make design simpler by not using maximum
encoding

Fig. 15.11

1816/10/2000 Copyright Teemu Kerola 2000

Micro-instruction Encoding (2)

• Functional encoding
– each field controls some function

• load accumulator
• load ALU operands
• compute next PC

• Resource encoding
– each field controls some resource

• ALU
• memory

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 10

1916/10/2000 Copyright Teemu Kerola 2000

Example Micro-instruction Sets
for a Simple Machine (3)

• Micro-instruction types
– 3 register transfers, 2 mem ops, 5 ALU ops, 3 seq. ops

• Vertical format
– 3 bits for type, 3 bits for operation
– 2 bits for reg select (max 4 regs)

• Horizontal format
– 2 bits for reg transfers (3 ops + “none”)
– 2 bits for mem ops (2 ops + “none”)
– 2 bits for seq. ops (3 ops + “none”)
– 3 bits for ALU ops (5 ops + “none”)
– 2 bits for reg select + 8 bits for constant

Fig. 15.12

type operation reg

Fig. 15.12 (a)

Fig. 15.12 (b)

2016/10/2000 Copyright Teemu Kerola 2000

LSI-11 Single Board Processor

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 11

2116/10/2000 Copyright Teemu Kerola 2000

LSI-11 (PDP-11) (5)

• Three-chip single board processor
– data chip

• 26 8-bit regs
– 8 16-bit general purpose regs,
– PWS, MAR, MBR, ...

• 8-bit ALU
– (at least) 2 passes needed for 16-bit reg ops

– control chip
– control store chip

• 22 bit wide control mem for micro- instructions
– connected by micro-instruction bus

Fig. 15.14

Fig. 15.13

2216/10/2000 Copyright Teemu Kerola 2000

LSI-11 Micro-instruction Set (2)

• Implements PDP-11 instruction set
architecture for LSI-11 hardware
– e.g., PDP-11 16 bit ALU vs. LSI-11 8-bit ALU

• 22 bit wide, extremely vertical set
– 4 bits for special functions
– 1 bit for testing interrupts
– 1 bit for “micro-subroutine return”
– 16 bits for variable format micro-ops

• jump, cond. branch, literal ops, reg ops
• ALU, logical, general, I/O ops

Fig. 15.15

Table 15.5

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 12

2316/10/2000 Copyright Teemu Kerola 2000

-- End of Chapter 15 --
-- Micro-programmed Control --

(Fig. 16.10)
http://infopad.EECS.Berkeley.EDU/CIC/die_photos/pentium.gif

2416/10/2000 Copyright Teemu Kerola 2000

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 13

2516/10/2000 Copyright Teemu Kerola 2000

Summary (10)

• How does clock signal execute instructions?
• Low level stuff

– gates, basic circuits, registers, memory

• Cache
• Virtual memory & TLB
• ALU, int & FP arithmetics
• Instruction sets
• CPU structure & pipelining
• Branch prediction, limitations, hazards, issue
• RISC & superscalar processor
• Hardwired & micro-controlled control

2616/10/2000 Copyright Teemu Kerola 2000

Want to Know More?
• Read the text book completely
• 58070-8 Computer Architecture (4 cr)

Computer Architecture
(Tietokonearkkitehtuurit)

Comp. Org. II
(TiKRa)

Conc. Systems (Rio)
Data Struct. (TiRa)
Compilers (OKK)
Oper. Systems (KJx)
Data Comm. (TiLix)

...

Computer Organization II 10/16/2000

Ch 15, Microprogrammed Control 14

2716/10/2000 Copyright Teemu Kerola 2000

-- The End --

Cache-coherent
non-uniform
memory access
(CC-NUMA)
machine

(Fig. 16.10)

