Computer Organization |1

10/11/2000

Hardwired Control Unit
Ch 14

Micro-operations
Controlling Execution
Hardwired Control

11/10/2000 Copyright Tesmu Kerola 2000 1

What is Control
« So far, we have shown what happens inside
CPU
— execution of instructions
« opcodes, addressing modes, registers
 |/0O & memory interface, interrupts
* Now, we show how CPU controls these
thingsthat happen
— how to control what gate or circuit should do at
any giventime
« control wires transmit control signas
« control unit decides values for those signals

11/10/2000 Copyright Teemu Kerola 2000 2

Micro-operations () PB—

* Basic operations on which more com,
instructions are built .

— each execution phase (e.g., fetch) consists of one or
more sequential micro-ops

— each micro-op executed in one clock cyclein some
subsection of the processor circuitry

— each micro-op specifies what happens in some area
of cpu circuitry
— cycle time determined by the longest micro-op!
» Micro-ops for (different) instructions can be
executed simultaneously
— non-conflicting, independent areas of circuitry

11/10/2000 Copyright Teemu Kerola 2000 3

Instruction Fetch Cycle uo

* 4registersinvolved IIQQTlJJ

- MAR, MBR, PC, IR
o \What hanneng?

fddress of next ingtruction isin PC
fddress (MAR) is placed on address bus
READ command given to memory
Result (from memory) appears on data bus
Pata from data bus copied into MBR

PC incremented by 1

New instruction moved from MBR to IR

11/10/2000 Copyright Teemu Kerola 2000 4

Instruction Fetch Micro-ops o
. i Cro- sl: MAR - (PC), READ
4 micro-ops 2 MBR- (mem)
—can not change order |s3: pC—~ (PC) +1
— 82 must be done after s1 4 TR= (MBR)
— s3 can be done simultanously withs2 =
m\pllut
— s4 can be done
with s3, but must i MAR = (PC),4READ

TcKS, N PC- (PC)+1

3 TR- (MBR)

Assume: mem read in one cycle

11/10/2000 Copyright Tesmu Kerola 2000 5

Micro-op Grouping

* Musthaveproper §. yar- (Po)
sequence 2. MBR-= (mem)
» No conflicts
—no write to/read from
with same register :\f(B_‘R Z'Mgf)n)

(set?) at the sametime

— each circuitry can be
used by only one 2. PC- (PQ)+1

micro-op at atime {3 RI-= (RI) + (MBR)
« ALU

11/10/2000 Copyright Teemu Kerola 2000 6

Ch 14, Hardwired Control

Computer Organization |1 10/11/2000

Micro-op Types « Indirect Cycle
« Transfer datafrom one reg to another * Instruction contains indirect address of an
« Transfer datafrom reg to external area operand, instead of direct operand address
— memory
_1/o IR: L)pcode |reg | addr‘ |

Transfer datafrom external to register
ALU or logical operation between registers

MAR = (IRugress)
MBR- (mem) (Replace indirect address
Rises= (MBR) | by direct address)

11/10/2000 Copyright Tesmu Kerola 2000 7 11/10/2000 Copyright Teemu Kerola 2000 8
Interrupt Cycle Execute Cycle
« After execution cycle test for interrupts + Different for each op-code
« If interrupt bits on, then m 11 MAR- (IRyged)
12: MBR - (memory)
— save PC to memory . 13 R1- (R1)+(MBR)
— jump to interrupt t: MBR=- (PC)

t2: MAR - save-address

handler PC - routine-address LDD—R-l—RQ—R&l d L—%—%—li
—or, find out first 3 e ——{MBR) m
correct handler for

this type of interrupt implicit - just wait? mﬁ in jpelrect-eyete?
and then jump to that (need more micro-ops) ' L IR0 then
. - f R
— context saved by interrupt handler Can this be done in one cycle?
11/10/2000 Copyright Teemu Kerola 2000 9 11/10/2000 Copyright Teemu Kerola 2000 10
Instruction Cycle
Execute Cycle (contd) _ Cycleg
» Decomposed to micro-ops
BSA MySib| | tl MAR (R " State machine for processor []
MBR- (PC) — dtate: execution phase g 14
MySUb/ DC 12: PC = (IRuyes) — sub-state: current group of micro-ops
y‘. LOAD | 3 TST"?PZ, (J,MlBR) * |n each sub-state the control signals have specific
Y : values dependent
/ RET Wy SuD \ — on that sub-state
1¢ ingtruction in MySubt+1 — on IR register fields and flags g‘
Return address stored here « including control signals from the bus 19. 14.
« including values (flags) produced by previous sub-state
11/10/2000 Copyright Tesmu Kerola 2000 11 11/10/2000 Copyright Teemu Kerola 2000 12

Ch 14, Hardwired Control

Computer Organization |1

10/11/2000

Control State Machine

« Each state defines current control signal
values ﬂ

— determines what happens in next clock cycle

 Current state and current register/flag values

determine next state -

11/10/2000 Copyright Tesmu Kerola 2000 13

Control Signal Types o

* Control dataflow from one register to
another

» Control signalsto ALU
— ALU does also all logica ops

* Control signalsto memory or 1/O devices
— viacontrol bus

11/10/2000 Copyright Teemu Kerola 2000

14

Control Signal Example «

P

¢ Accumulator architecture

« Control signasfor given micro-ops
cause micro-ops to be executed
— setting C, makes value stored in PC to be
copied to MAR in next clock cycle

* C, contrals Input Data Strobe for MAR
(see Fig. A.30 for register circuit)

Example: Intel 8085 ¢

Introduced 1976
3,5, or 6 MHz, no cache

8 bit data bus, 16 bit address bus
— multiplexed

One 8-bit accumulator

TonTians | aones

) LDA MyNumber
— setting Cg & C5 makes memory perform
aREAD and value in data bus copied to OUT #2 Mm 2 bytes
MBR in next clock cycle opcode port
11/10/2000 Copyright Teemu Kerola 2000 15 11/10/2000 Copyright Teemu Kerola 2000 16
Hardwired

Example: i8085 ¢

* Instead of complex data path all datatlg
within CPU go viainternal bus IO
— may not be good approach for superscaar pipelined
processor - bus should not be bottleneck
» External signals Im?#z‘

» Each instruction is 1-5 machine cycles
— one external bus access per machine cycle

» Each machine cycleis 3-5 states

» Each state is one clock cycle
11/10/2000 Copyright Tesmu Kerola 2000 17

» Example: OUT instruction

Control Logic Imple

Initia representation:

Sequencing control:

Logic representation:

Implementation:

11/10/2000 Copyright Teemu Kerola 2000

Ch 14, Hardwired Control

Computer Organization |1

10/11/2000

Finite State Diagram Explicit Next State Function
Control Logic o 3
u > .
t ~—Multicycle
>—Datapath
p 3
u >
t
Inputs s
A|A|A|A|A|A| A|A|A|A|
Opcode | hate Reg
AALA|A
11/10/2000 Cop/ngf; Teemu Kerola 2000 19 11/10/2000 Copyright Teemu Kerola 2000 20
Logic Equations - -
gic Eq Hardwired Control Logic
INext state from current state Alternatively, . . .
— State 0 -> Statel rior state & condition b C| rCUItI'y becomes Very b|g and CompleX
—State 1->S2, 6, 8, S0 |[P4-S5-S2S8.59 81> Ss‘a‘ei very soon
-> State. .
- gaeg»_ - State 2 — may be unnecessarily slow
:3:24:W -> State 3 —simpler is smaller, and thus faster
- State5 -> Saeq sz aorsow o emes * Many lines (states) exactly or aimost similar
~Sae6-> Sael > State 6 + Have methods to find similar lines and
—Sate 7-> StateQ State 6 -> State 7 Combi ne thern
—State 8 -> State 0 -> State 8 .
— State 9-> State Q State2 & op = JIMP -> State 9 —notsi mpl €
—State10-> Jate 11 L >sel — save space, may lose in speed
—-ﬁ&w State 10 —=Stare 1T
11/10/2000 Copyright Teemu Kerola 2000 21 11/10/2000 Copyright Teemu Kerola 2000 22

HP 9100 Calculator (1968), 20 kg,
$5000, 16 regs (data or 14 instructions/reg), g
32Kb ROM, 2208 bit RAM magnetic core memory!

Hardwired Control Logic board http://www.hpmuseumorg/9100cl.jpg

11/10/2000 Copyright Teemu Kerola 2000 23

Ch 14, Hardwired Control 4

