Computer Organization |1

10/11/2000

Superscaar Processors
Ch 13

Limitations, Hazards
Instruction Issue Policy
Register Renaming
Branch Prediction

11/10/2000 Copyright Tesmu Kerola 2000 1

Superscalar Processing
» Basic idea: more than one instruction completion
per cycle

* Aimed at speeding up scalar processing
— use multiple pipelines and -
not more phases
e Many instructions in execution phase

simultaneously
— need paralelism adso in earlier & later phases

Multiple pipelines
— question: when can ingtruction be executed?

¢ Fetch many instructions at the same time

— memory access must not be bottleneck

11/10/2000 Copyright Teemu Kerola 2000 2

Why couldn’t we execute this
instruction right now? @

« (True) DmaDm load ré, solary(r6)
mul r’)’Ar/IY r10

* Procedural or Control Dependency]
— even more codtlier than with normal (kontrolli -
pipeline
— now may waste more than one instruction!

» Resource Conflict

— thereis no available circuit right now (resurssi-
— memory buffer, FP adder, register fileport || __¢.1 .y
kenrthkt

11/10/2000 Copyright Teemu Kerola 2000 3

Why couldn’t we execute this
instruction right now .

* Name dependency
— two ingtruction use the same dataitem
* register or in memory
— no value passed from one ingtruction to another
— instructions have al their correct data available
— each individua result is the one intended
— overall result is not the one intended
— two cases: Qutput Dependency & Antidependency

« exampleson next 2 slides

— what if there are aliases? (two names, same data)

11/10/2000 Copyright Teemu Kerola 2000 4

Output Dependency? o

« Some earlier instruction has not yet finished

writing from the same location that we want
to writeto eed (11 sm
* Need to preserve order add 12,11, 13
ad 1L 4,15
(0] e Um I romr
11/10/2000 Copyright Tesmu Kerola 2000 5

Antidependency o)

Some earlier ingtruction has not yet finished reading from
the same location that we want to writeto
Need to preserve order

mv r2,41
>

Od—TL T4 15

Want to have origind vaue of r1inr2

11/10/2000 Copyright Teemu Kerola 2000 6

Ch 13, Superscalar Processors

Computer Organization |1

10/11/2000

Machine Parallelism

« Instruction-level parallelism
— How much parallelism is there
— Theoretical maximum
¢ Machine parallelism
— How much parallelism is achieved by any specific
machine or architecture?
— At most as much as ingruction-level parallelism
* dependencies?
« physical resources?
* not optimized (stupid) design?

11/10/2000 Copyright Tesmu Kerola 2000

Superscaar Processor
Instruction dispatch

— get next available executable ingtruction from
instruction stream

« Window of execution

— dl instructions that are considered to be issued
* Instruction issue

— alow instruction to start execution

— execution and completion phase should continue
now with no gtalls

« Instruction reorder and commit (retiring)
— hopefully al system state changes here!
— last chance to change order or abandon results

11/10/2000 Copyright Teemu Kerola 2000 8

Instruction Dispatch

« Whenever there are both
— available slots in window of execution

— ready instructions from prefetch or branch
prediction buffer

11/10/2000 Copyright Teemu Kerola 2000

Window of Execution

* Bigger isbetter

— easier to find agood candidate that can be
issued right now
— more work to figure out all dependencies
— too small value will limit machine parallelism
significantly
« E.g,, 6 instruction could be issued,
but only 4 next ones are even considered

11/10/2000 Copyright Teemu Kerola 2000 10

Instruction Issue

« Select next instruction(s) for execution

» Check first everything so that execution can
proceed with no stalls (stopping) to the end
— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies

11/10/2000 Copyright Tesmu Kerola 2000 11

Instruction Issue Policies @

« |Instruction fetch policy

— constraints on how many instructions are
considered to be dispatched at atime

« 2 ingtructions fetched and decoded at atime
P both must be dispatched before next 2 fetched

« Instruction execution policy

— constraints on which order dispatched
instructions may start execution

« Completion policy
— constraints the order of completions

11/10/2000 Copyright Teemu Kerola 2000 12

Ch 13, Superscalar Processors

Computer Organization |1

10/11/2000

Example 1 of Issue Palicy «

 In-order issue with in-order completion
— same as purel uential execution
- no instruzti on{/vsi[ragow needed
— ingtruction issued only in original order
* many can be issued at the same time
— ingtructions completed only in original order
* many can be completed a the same time
— check before issue:
« resource conflicts, data & control dependencies

« execution time, so that completions occur in order:
wait long enough that earlier instructions will
complete first

11/10/2000 Copyright Tesmu Kerola 2000 13

Example 2 of Issue Policy

¢ In-order issue with out-of-order completion
— issuein original order 0. 134 (b ‘
* many can be issued at the same time ﬁ

— no instruction window needed

— alow executions complete before those of earlier
instructions

— Check before issue:
« resource conflicts, data & control dependencies

« output dependencies: wait long enough to solve
them

11/10/2000 Copyright Teemu Kerola 2000 14

Example 3 of Issue Palicy

Out-of -order issue with out-of-order completion

— issuein any order m
* many can be issued at the same time T

— instruction window for dynamic instruction scheduling

— dlow executions complete before those of earlier
instructions

— Check before issue:
« resource conflicts, data & control dependencies
* output dependencies
« antidependencies: must wait for earlier instructions

issued later to pick up arguments before overwriting
them

11/10/2000 Copyright Teemu Kerola 2000 15

Get Rid of Name Dependencies

« Problem: independent data stored in locations with
the same name

— often a storage conflict: same register used for two
different purposes

— resultsin wait stages (pipeline stals, “bubbles’)
« Cure: register renaming
— actua registers may be different than named registers

— actua regigters alocated dynamically to named
registers

— dlocate them so that name dependencies are avoided

11/10/2000 Copyright Teemu Kerola 2000 16

INd @
Output dependency: 13 can not R3:=R3 + R5: (12)

R4'.553 +1; (12
R3:=R5+1,; 13
RT=R3*TR4,___(14)

Antidependency : 13 can not complete
before 12 has read value from R3:

Rename registers to hardware
registers R3a, R3b, R3c, R3b:=R3a + R5a (12)

Rab, RS, Rb R4b:=R3b+1 12
| R3c:=Rba+ 1 13
No name dependenciesnow: R7D=R3c + R4D T4)

AN

« Drawback: need more registers
* Why R3a& R3b?

11/10/2000 Copyright Tesmu Kerola 2000 17

Superscalar Implementation

* Fetch strategy
— prefetch, branch prediction
« Dependency check logic

— forwarding circuits to transfer dependency data directly
instead via registers or memory

* Multiple functional units (pipelines)

« Effective memory hierarchy to service many
memory accesses simultaneously

« Logic to issue multiple instruction simultaneously
* Logic to commit instruction in correct order

0.

11/10/2000 Copyright Teemu Kerola 2000 18

Ch 13, Superscalar Processors

Computer Organization |1

10/11/2000

Overall Gain from Superscalar
Implementation

¢ Seetheeffect of ...
— renaming b right graph
—window size b color of vertical bar
— out-of-order issue P “base” machine
— duplicated
« data cache access b “+ld/st”
*ALU b “ALU”
* both b “both”
* Max speed-up about 4

11/10/2000 Copyright Tesmu Kerola 2000 19

11/10/2000 Copyright Teemu Kerola 2000 20

Example:
PowerPC 601 Architecture

* General RISC organization
— instruction formats
— 3 execution units

« Logical view o m
— 4 instruction window for issue T

— each execution unit picks up next one for it
whenever there is room for new instruction

— integer instructions issued only when 1st in
queue

11/10/2000 Copyright Teemu Kerola 2000 21

PowerPC 601 Pipelines «
* Instruction pipelines llﬁie?—ﬁ—'

— al state changesin final “Write Back” phase
— up to 3instruction can be dispatched at the
same time, and issued right after that in each
pipeline if no dependencies exist
« dependencies solved by stdls
— ALU ops place their result in one of 8 condition
code field in condition register
* up to 8 separate conditions active concurrently

11/10/2000 Copyright Teemu Kerola 2000 22
PowerPC 601 Branches
@ PowerPC 601 Example
* Zero cycle branches

— branch target addresses ted already i "

|£\?\,ne$ digrp%tch bu:‘fers compy reacyn * Conditional branch examp

« before dispatch or issue! — Original C code
— Easy: unconditional branches (jumps) or branch — Assembly code 0-

on already resolved condition code field
— otherwise
« conditional branch backward: guess taken
« conditional branch forward: guess not taken
« if speculation ends up wrong, cancel conditional
instructions in pipeline before writeback
« gpeculate only on one branch at atime

11/10/2000 Copyright Tesmu Kerola 2000 23

« predict branch not taken
— Correct branch prediction
— Incorrect branch prediction

11/10/2000 Copyright Teemu Kerola 2000 24

Ch 13, Superscalar Processors

Computer Organization |1 10/11/2000

PowerPC 620 Architecture PowerPC 620 Rename Registers o
* Rename registers to store results
committed HePad6] Fig. 4.49
* 6 execution units Fig. 4.25 — normal uncompleted and speculative instructions
« Up to 4 instructions dispatched simultaneously - 8int and 12 FF:‘“;'?‘I rename reg'%rit
» Reservation stations to store dispatched 'T SAMe register T1le as normel regrsters
instructions and their arguments HePag6] Fig. 4.49 - s C[-jpled o normal registers at_ opmmn :
n Ed — information on what to do a commit isin completion
— kind of rename registers also! unit in reorder buffers
« Instruction completes (commits) from completion
unit reorder buffer once all previous instructions
are committed
— max 4 ingdructions can commit at atime
11/10/2000 Copyright Tesmu Kerola 2000 25 11/10/2000 Copyright Teemu Kerola 2000 26
. l— nd of Chapter 13: Superscalar —— —
PowerPC 620 Speculation s e :
1 [e
« Speculation on branches 1| = = | _ =}
— 256-entry branch target buffer fﬁ S e il i
* two-way set-associative ; —L
— 2048-entry branch history table —HH4 |
« used when branch target buffer misses — 7
— speculation on max 4 unresolved branches i |
= Jl—in 440\

11/10/2000 Copyright Teemu Kerola 2000 27 11/10/2000 Copyright Teemu Kerola 2000 28

Ch 13, Superscalar Processors

