
Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 1

111/10/2000 Copyright Teemu Kerola 2000

Superscalar Processors
Ch 13

Limitations, Hazards
Instruction Issue Policy

Register Renaming
Branch Prediction

211/10/2000 Copyright Teemu Kerola 2000

Superscalar Processing (5)

• Basic idea: more than one instruction completion 
per cycle

• Aimed at speeding up scalar processing
– use multiple pipelines and 

not more phases
• Many instructions in execution phase

simultaneously
– need parallelism also in earlier & later phases

• Multiple pipelines
– question: when can instruction be executed?

• Fetch many instructions at the same time
– memory access must not be bottleneck

Fig. 13.1

Fig. 13.2



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 2

311/10/2000 Copyright Teemu Kerola 2000

(kontrolli-
riippuvuus)

Why couldn’t we execute this 
instruction right now? (3)

• (True) Data Dependency

• Procedural or Control Dependency
– even more costlier than with normal 

pipeline
– now may waste more than one instruction!

• Resource Conflict
– there is no available circuit right now
– memory buffer, FP adder, register file port

(datariippuvuus)
load r4, salary(r6)

mul r2, r4, r10

Fig. 13.3

(resurssi-
konflikti)

411/10/2000 Copyright Teemu Kerola 2000

Why couldn’t we execute this 
instruction right now? (8)

• Name dependency
– two instruction use the same data item 

• register or in memory
– no value passed from one instruction to another
– instructions have all their correct data available
– each individual result is the one intended
– overall result is not the one intended
– two cases: Output Dependency & Antidependency

• examples on next 2 slides

– what if there are aliases? (two names, same data)

(nimiriippuvuus)

(outputriippuvuus) (antiriippuvuus)



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 3

511/10/2000 Copyright Teemu Kerola 2000

Output Dependency? (1)

• Some earlier instruction has not yet finished
writing from the same location that we want 
to write to

• Need to preserve order
read r1, sum
add r2, r1, r3
add r1, r4, r5

Want to have sum of r4 and r5 in r1

611/10/2000 Copyright Teemu Kerola 2000

Antidependency (1)

mv r2, r1

add r1, r4, r5

Want to have original value of r1 in r2

Some earlier instruction has not yet finished reading from 
the same location that we want to write to
Need to preserve order



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 4

711/10/2000 Copyright Teemu Kerola 2000

Machine Parallelism (2)

• Instruction-level parallelism
– How much parallelism is there 
– Theoretical maximum

• Machine parallelism
– How much parallelism is achieved by any specific 

machine or architecture?
– At most as much as instruction-level parallelism

• dependencies?
• physical resources?
• not optimized (stupid) design?

811/10/2000 Copyright Teemu Kerola 2000

Superscalar Processor
• Instruction dispatch

– get next available executable instruction from 
instruction stream

• Window of execution
– all instructions that are considered to be issued

• Instruction issue
– allow instruction to start execution
– execution and completion phase should continue 

now with no stalls
• Instruction reorder and commit (retiring)

– hopefully all system state changes here!
– last chance to change order or abandon results

Fig. 13.6



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 5

911/10/2000 Copyright Teemu Kerola 2000

Instruction Dispatch

• Whenever there are both
– available slots in window of execution
– ready instructions from prefetch or branch 

prediction buffer 

1011/10/2000 Copyright Teemu Kerola 2000

Window of Execution

• Bigger is better
– easier to find a good candidate that can be 

issued right now
– more work to figure out all dependencies
– too small value will limit machine parallelism 

significantly
• E.g., 6th instruction could be issued, 

but only 4 next ones are even considered



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 6

1111/10/2000 Copyright Teemu Kerola 2000

Instruction Issue

• Select next instruction(s) for execution
• Check first everything so that execution can 

proceed with no stalls (stopping) to the end
– resource conflicts
– data dependencies 
– control dependencies
– output dependencies
– antidependencies

1211/10/2000 Copyright Teemu Kerola 2000

Instruction Issue Policies (3)

• Instruction fetch policy
– constraints on how many instructions are 

considered to be dispatched at a time
• 2 instructions fetched and decoded at a time  

⇒ both must be dispatched before next 2 fetched

• Instruction execution policy
– constraints on which order dispatched 

instructions may start execution

• Completion policy
– constraints the order of completions



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 7

1311/10/2000 Copyright Teemu Kerola 2000

Example 1 of Issue Policy (6)

• In-order issue with in-order completion
– same as purely sequential execution
– no instruction window needed
– instruction issued only in original order

• many can be issued at the same time
– instructions completed only in original order

• many can be completed at the same time
– check before issue:

• resource conflicts, data & control dependencies
• execution time, so that completions occur in order: 

wait long enough that earlier instructions will 
complete first

Fig. 13.4 (a)

1411/10/2000 Copyright Teemu Kerola 2000

Example 2 of Issue Policy (5)

• In-order issue with out-of-order completion
– issue in original order

• many can be issued at the same time
– no instruction window needed
– allow executions complete before those of earlier 

instructions
– Check before issue:

• resource conflicts, data & control dependencies
• output dependencies: wait long enough to solve 

them

Fig. 13.4 (b)



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 8

1511/10/2000 Copyright Teemu Kerola 2000

Example 3 of Issue Policy (5)

• Out-of-order issue with out-of-order completion
– issue in any order

• many can be issued at the same time
– instruction window for dynamic instruction scheduling
– allow executions complete before those of earlier 

instructions
– Check before issue:

• resource conflicts, data & control dependencies
• output dependencies
• antidependencies: must wait for earlier instructions 

issued later to pick up arguments before overwriting 
them

Fig. 13.4 (c)
The real

superscalar 

processor

1611/10/2000 Copyright Teemu Kerola 2000

Get Rid of Name Dependencies (2)

• Problem: independent data stored in locations with 
the same name
– often a storage conflict: same register used for two 

different purposes
– results in wait stages (pipeline stalls, “bubbles”)

• Cure: register renaming
– actual registers may be different than named registers
– actual registers allocated dynamically to named 

registers
– allocate them so that name dependencies are avoided



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 9

1711/10/2000 Copyright Teemu Kerola 2000

Register Renaming (3)

• Drawback: need more registers
• Why R3a & R3b?

Antidependency: I3 can not complete 
before I2 has read value from R3:

R3b:=R3a + R5a (I1)
R4b:=R3b + 1 (I2)
R3c:=R5a + 1 (I3)
R7b:=R3c + R4b (I4)

Rename registers to hardware
registers  R3a, R3b, R3c,

R4b, R5a, R7b 

No name dependencies now:

Output dependency: I3 can not 
complete before I1 has completed first:

R3:=R3 + R5;  (I1)
R4:=R3 + 1;    (I2)

R3:=R5 + 1;    (I3)
R7:=R3 + R4;  (I4)

1811/10/2000 Copyright Teemu Kerola 2000

Superscalar Implementation (6)

• Fetch strategy
– prefetch, branch prediction

• Dependency check logic 
– forwarding circuits to transfer dependency data directly 

instead via registers or memory
• Multiple functional units (pipelines)
• Effective memory hierarchy to service many 

memory accesses simultaneously
• Logic to issue multiple instruction simultaneously
• Logic to commit instruction in correct order

Fig. 13.6



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 10

1911/10/2000 Copyright Teemu Kerola 2000

Overall Gain from Superscalar
Implementation

• See the effect of ... 
– renaming ⇒ right graph
– window size ⇒ color of vertical bar
– out-of-order issue ⇒ “base” machine
– duplicated 

• data cache access ⇒ “+ld/st” 
• ALU ⇒ “ALU”
• both ⇒ “both”

• Max speed-up about 4

Fig. 13.5

2011/10/2000 Copyright Teemu Kerola 2000



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 11

2111/10/2000 Copyright Teemu Kerola 2000

Example: 
PowerPC 601 Architecture (2)

• General RISC organization
– instruction formats
– 3 execution units

• Logical view
– 4 instruction window for issue
– each execution unit picks up next one for it 

whenever there is room for new instruction
– integer instructions issued only when 1st in 

queue

Fig. 13.10

Fig. 13.11

Fig. 10.9

2211/10/2000 Copyright Teemu Kerola 2000

PowerPC 601 Pipelines (4)

• Instruction pipelines
– all state changes in final “Write Back” phase
– up to 3 instruction can be dispatched at the 

same time, and issued right after that in each 
pipeline if no dependencies exist

• dependencies solved by stalls

– ALU ops place their result in one of 8 condition 
code field in condition register

• up to 8 separate conditions active concurrently

Fig. 13.12



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 12

2311/10/2000 Copyright Teemu Kerola 2000

PowerPC 601 Branches (4)

• Zero cycle branches
– branch target addresses computed already in 

lower dispatch buffers 
• before dispatch or issue!

– Easy: unconditional branches (jumps) or branch 
on already resolved condition code field

– otherwise
• conditional branch backward: guess taken
• conditional branch forward: guess not taken
• if speculation ends up wrong, cancel conditional 

instructions in pipeline before write-back
• speculate only on one branch at a time

2411/10/2000 Copyright Teemu Kerola 2000

PowerPC 601 Example

• Conditional branch example
– Original C code
– Assembly code

• predict branch not taken

– Correct branch prediction
– Incorrect branch prediction

Fig. 13.13 (a)

Fig. 13.14 (a)

Fig. 13.14 (b)

Fig. 13.13 (b)



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 13

2511/10/2000 Copyright Teemu Kerola 2000

PowerPC 620 Architecture

• 6 execution units
• Up to 4 instructions dispatched simultaneously
• Reservation stations to store dispatched 

instructions and their arguments
– kind of rename registers also!

Fig. 4.25

[HePa96] Fig. 4.49

2611/10/2000 Copyright Teemu Kerola 2000

PowerPC 620 Rename Registers (7)

• Rename registers to store results not yet 
committed
– normal uncompleted and speculative instructions
– 8 int and 12 FP extra rename registers

• in same register file as normal registers
– results copied to normal registers at commit
– information on what to do at commit is in completion 

unit in reorder buffers
• Instruction completes (commits) from completion 

unit reorder buffer once all previous instructions 
are committed
– max 4 instructions can commit at a time

[HePa96] Fig. 4.49



Computer Organization II 10/11/2000

Ch 13, Superscalar Processors 14

2711/10/2000 Copyright Teemu Kerola 2000

PowerPC 620 Speculation

• Speculation on branches
– 256-entry branch target buffer

• two-way set-associative 

– 2048-entry branch history table
• used when branch target buffer misses

– speculation on max 4 unresolved branches

2811/10/2000 Copyright Teemu Kerola 2000

-- End of Chapter 13: Superscalar --

(Hennessy-Patterson, Computer Architecture, 2nd Ed, 1996)

(Fig. 4.49)


