Computer Organization |1

11/10/2000

Superscalar Processors
Ch 13

Limitations, Hazards
Instruction Issue Policy
Register Renaming
Branch Prediction

Copyright Teemu Kerola 2000 1

11/10/2000

Superscalar Processing o

Basic idea: more than one instruction completion
per cycle
Aimed at speeding up scalar processing

— use multiple pipelines and

not more phases

Many instructionsin execution phase
simultaneoudy

— need paralelism aso in earlier & later phases
Multiple pipelines Fig. 13.1

— guestion: when can instruction be executed?
Fetch many instructions at the same time

— memory access must not be bottleneck

Fig 132

Copyright Teemu Kerola2000 2

Ch 13, Superscalar Processors

10/11/2000

Computer Organization |1 10/11/2000

Why couldn’t we execute this

Instruction right now? Fig. 13.3

» (True) Data Dependency
(datariippuvuus)

load r4,\sa|ary(r6)
mul r2,r4,rl0

» Procedural or Control Dependency

— even more costlier than with normal (_k.ontrolh-
pipeline riippuvuus)

— nhow may waste more than one instruction!
» Resource Conflict

— thereis no available circuit right now (resurss-
— memory buffer, FP adder, register file port konflikti)

11/10/2000 Copyright Teemu Kerola 2000 3

Why couldn’t we execute this

Instruction right now?2

* Name dependency (nimiriippuvuus)

— two instruction use the same data item

* register or in memory

— no value passed from one instruction to another

— instructions have all their correct data available

— each individual result is the one intended

— overal result is not the one intended

— two cases: Output Dependency & Antidependency

(outputriippuvULS) (antiriippuvuus)
\ L T 7 \ T 7

« exampleson next 2 slides
— what if there are aliases? (two names, same data)

11/10/2000 Copyright Teemu Kerola2000 4

Ch 13, Superscalar Processors 2

Computer Organization |1

to writeto

Output Dependency? o

» Some earlier instruction has not yet finished
writing from the same location that we want

read ,rl, sum
* Need to preserve order add £r2, r1, 13
add rl,r4,r5
Want to have sum of r4 and r5inrl
11/10/2000 Copyright Teemu Kerola 2000 5

Antidependency o

Some earlier instruction has not yet finished reading from
the same location that we want to write to
Need to preserve order

11/10/2000

mv r2,rl
>
add 11 rd (5

\\ant to have orj gi nalvalueof r1 inr2

Copyright Teemu Kerola2000 6

Ch 13, Superscalar Processors

10/11/2000

Computer Organization |1 10/11/2000

Machine Parallelism

* Instruction-level paralelism
— How much parallelism is there
— Theoretical maximum

* Machine paralelism

— How much parallelism is achieved by any specific
machine or architecture?

— At most as much as instructionlevel parallelism
* dependencies?
* physical resources?
* not optimized (stupid) design?

11/10/2000 Copyright Teemu Kerola 2000 7

Superscalar Processor

Instruction dispatch Fig 136

— get next available executable instruction from
instruction stream

Window of execution

— all instructions that are considered to be issued
Instruction issue

— allow instruction to start execution

— execution and completion phase should continue
now with no stalls

Instruction reorder and commit (retiring)

— hopefully all system state changes here!
— last chance to change order or abandon results

11/10/2000 Copyright Teemu Kerola2000 8

Ch 13, Superscalar Processors 4

Computer Organization |1 10/11/2000

Instruction Dispatch

* Whenever there are both
— available dots in window of execution

— ready instructions from prefetch or branch
prediction buffer

11/10/2000 Copyright Teemu Kerola 2000 9

Window of Execution

» Bigger is better

— eader to find a good candidate that can be
issued right now

— more work to figure out all dependencies

— too small value will limit machine paralelism
significantly

* E.g., 6™ instruction could be issued,
but only 4 next ones are even considered

11/10/2000 Copyright Teemu Kerola2000 10

Ch 13, Superscalar Processors 5

Computer Organization |1 10/11/2000

| nstruction Issue

» Select next instruction(s) for execution

» Check first everything so that execution can
proceed with no stalls (stopping) to the end
— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies

11/10/2000 Copyright Teemu Kerola 2000 11

Instruction Issue Policies ¢

* Instruction fetch policy

— constraints on how many instructions are
considered to be dispatched at atime

* 2 instructions fetched and decoded at atime
P both must be dispatched before next 2 fetched

* Instruction execution policy

— constraints on which order dispatched
instructions may start execution

» Completion policy
— congtraints the order of completions

11/10/2000 Copyright Teemu Kerola2000 12

Ch 13, Superscalar Processors 6

Computer Organization |1 10/11/2000

Example 1 of Issue Policy

* In-order issue with in-order completion
— same as purely sequential execution
— no ingtruction window needed
— instruction issued only in original order
* many can be issued at the same time
— instructions completed only in original order
* many can be completed at the same time
— check before issue:
* resource conflicts, data & control dependencies

* execution time, so that completions occur in order:
wait long enough that earlier instructions will
complete first

Fig. 134 (a)

11/10/2000 Copyright Teemu Kerola 2000 13

Example 2 of Issue Policy ¢

* In-order issue with out-of-order completion
— issuein original order Fiq 124 (h)
* many can be issued at the same time i o
— no ingtruction window needed

— alow executions complete before those of earlier
instructions

— Check before issue:
* resource conflicts, data & control dependencies

* output dependencies: wait long enough to solve
them

11/10/2000 Copyright Teemu Kerola2000 14

Ch 13, Superscalar Processors 7

Computer Organization |1 10/11/2000

Example 3 of Issue Policy ¢

 Qut-of-order issue with out-of-order completion

— issuein any order Fig. 13.4 (0)
* many can be issued at the same time
— instruction window for dynamic instruction scheduling

— alow executions complete before those of earlier
instructions

— Check before issue:
* resource conflicts, data & control dependencies
* output dependencies

* antidependencies: must wait for earlier instructions
issued later to pick up arguments before overwriting
them

11/10/2000 Copyright Teemu Kerola 2000 15

Get Rid of Name Dependencies

 Problem: independent data stored in locations with
the same name

— often a storage conflict: same register used for two
different purposes

— results in wait stages (pipeline stalls, “bubbles’)
» Cure: register renaming
— actual registers may be different than named registers
— actua registers alocated dynamically to named
registers
— dlocate them so that name dependencies are avoided

11/10/2000 Copyright Teemu Kerola2000 16

Ch 13, Superscalar Processors 8

Computer Organization |1

Register Renaming ¢

— prefetch branch prediction

» Dependency check logic
— forwarding circuitsto transfer dependency data directly
instead via registers or memory

» Multiple functiona units (pipelines)

 Effective memory hierarchy to service many
memory accesses s multaneously

 Logic to issue multiple instruction simultaneoudy
» Logic to commit instruction in correct order

Output dependency: 13 can not R3:=R3 + R5: (1)
complete before |1 has completed first: (R4::R3 L1 ’ (12)
Antidependency: 13 can not complete RB'/"R5 + 1i (13)
before |2 has read value from R3: " ’
R7:=R3 + R4; (14)
Rename registers to hardware
registers R3a, R3b, R3c, R3b:=R3a + R5a (12)
Rdb, R5a, R7b R4b:=R3b + 1 (12)
R3c:=R5a+ 1 13
| No name dependencies now: | R7b:=R3c + R4b (14)
» Drawback: need more registers
« Why R3a& R3b?
11/10/2000 Copyright Teemu Kerola 2000 17
Superscalar | mplementation
 Fetch strategy Fig 136

11/10/2000 Copyright Teemu Kerola2000

18

Ch 13, Superscalar Processors

10/11/2000

Computer Organization |1 10/11/2000

Overall Gain from Superscalar
| mplementation

» Seetheeffect of ... Fig. 135
— renaming P right graph
— window size P color of vertical bar
— out-of-order issue P “basg’ machine
— duplicated
» data cache access b “+ld/st”
* ALU p “ALU”
* both P “both”

* Max speed-up about 4

11/10/2000 Copyright Teemu Kerola 2000 19

11/10/2000 Copyright Teemu Kerola2000 20

Ch 13, Superscalar Processors 10

Computer Organization |1 10/11/2000

Example:

PowerPC 601 Architecture ¢

» Genera RISC organization
— instruction formats Fig. 10.9
— 3 execution units Fig. 13.10
» Logical view
— 4 instruction window for issue

— each execution unit picks up next one for it
whenever there is room for new instruction

— integer instructions issued only when 1st in
queue

Fig. 13.11

11/10/2000 Copyright Teemu Kerola 2000 21

PowerPC 601 Pipelines q

* Instruction pipelines Fig- 1312
— all state changesin final “Write Back” phase
— up to 3 instruction can be dispatched at the
same time, and issued right after that in each
pipeline if no dependencies exist
* dependencies solved by stalls
— ALU ops place their result in one of 8 condition
code field in condition register
* up to 8 separate conditions active concurrently

11/10/2000 Copyright Teemu Kerola2000 22

Ch 13, Superscalar Processors 11

Computer Organization |1

PowerPC 601 Branches

e Zero cycle branches

— branch target addresses computed already in
lower dispatch buffers

* before dispatch or issuel
— Easy: unconditional branches (jumps) or branch
on already resolved condition code field
— otherwise
» conditional branch backward: guess taken
» conditional branch forward: guess not taken

* if speculation ends up wrong, cancel conditiona
instructions in pipeline before write-back

* gpeculate only on one branch at atime

11/10/2000 Copyright Teemu Kerola 2000 23
PowerPC 601 Example

» Conditional branch example

— Origina C code [Fig. 13.13 (a) |

— Assembly code Fig 1313 (h)

* predict branch not taken

— Correct branch prediction Fig.13.14 (a)

— Incorrect branch prediction Fig1314.(b)
11/10/2000 Copyright Teemu Kerola2000 24

Ch 13, Superscalar Processors

10/11/2000

12

Computer Organization |1 10/11/2000

PowerPC 620 Architecture

e 6 execution units Fig. 4.25
» Up to 4 instructions dispatched simultaneoudy

» Reservation stations to store dispatched
Instructions and their arguments [HePa96] Fig. 4.49
— kind of rename registers a so!

11/10/2000 Copyright Teemu Kerola 2000 25

PowerPC 620 Rename Registers

* Renameregistersto store results potat
committed [HePa96] Fig. 4.49
— normal uncompleted and speculative instructions
— 8int and 12 FP extrarename registers
* in same regigter file as normal registers
— results copied to normal registers at commit

— information on what to do at commit isin completion
unit in reorder buffers

* Instruction completes (commits) from completion
unit reorder buffer once al previous instructions
are committed

— max 4 instructions can commit at atime

11/10/2000 Copyright Teemu Kerola2000 26

Ch 13, Superscalar Processors 13

Computer Organization |1 10/11/2000

PowerPC 620 Speculation

» Speculation on branches
— 256-entry branch target buffer
* two-way set-associative
— 2048-entry branch history table
» used when branch target buffer misses
— gpeculation on max 4 unresolved branches

11/10/2000 Copyright Teemu Kerola 2000 27

{— End of Chapter 13: Superscalar --

(Ei

11/10/2000 Copyright Teemu Kerola2000 28

Ch 13, Superscalar Processors 14

