RISC Architecture

':_1:'-:
4

o v ’
i d o, (]
P s Ly F,
g i
i - B)
n 2 .
L L | |
= el 1
gl

. Ch12

Some History

Instruction Usage
Characteristics

Large Register Files
Register Allocation
Optimization
RISC vs. CISC

10/10/2000 Copyright Teemu Kerola 2000

Original Ideas Behind CISC
(Complex Instruction Set Comp.)

= » Makeit easy target for compiler
' — small semantic gap between HLL source code
and machine language representation

— good at the time when compiler technology big
problem

— make It easier to design new, more complex
languages

=N + Dothingsin HW, not in SW

— addressing mode for 2D array reference?

thmril 10/10/2000 Copyright Teemu Kerola 2000

Occam's Toothbrush

 The smple case is usually the most frequent and
the easiest to optimize!

e Do simple, fast things in hardware and be sure the
rest can be handled correctly in software

Ay e
s el
- 0y 3= L

[P Wiyl
i
- .
. b |
Wit y
r g oyl
-

' ** 10/10/2000 Copyright Teemu Kerola 2000

RISC Approach ¢

= Optimize for execution speed instead of
= ease of compilation
— compilers are good, let them do the hard work

— do most important things very well in HW
(machine instruction), rest in SW (subroutines)

e \WWhat are most important things?

— Those that consume most of the time
(In current systems)

i 10/10/2000 Copyright Teemu Kerola 2000

Amdahl’s Law (5)

"2 | Speedup due to an enhancement is proportional to the
~i= | fraction of the time that the enhancement can be used

Floating point instructions improved to run 2X; but only
10% of actual instructions are FP?

No speedup
'

ExTime, 4 x (0.9*1.0+ .1*0.5)
0.95 x ExTime4

ExTime

new

ExTime,y, = 1
0.95

= 1.053
<<2 I

Speedl”)overall = :
ExTime

new

10/10/2000 Copyright Teemu Kerola 2000

Where is Time Spent?
Dynamic behaviour

— execution time behaviour Table 12.2

Which operations are most common?

Which types of operands are most
common?

Which addressing modes are most
common?

Which cases are most common? |Table12.4
— E.g., number of subroutine parameters?

Table 12.3

Wit 10/10/2000 Copyright Teemu Kerola 2000

|deas Behind RISC (3)

. Very large set of registers

— bigger than can be addressed in machine instruction?
— compilers can do good register allocation

J&f' * Very ssimple and small instruction set Is faster

— easy to optimize instruction pipeline

i g .
2 o Economics

— Simple to implement
P quickly to market
P beat competition
P recover development costs

' 10/10/2000 Copyright Teemu Kerola 2000

CISC Architecture ¢

Large and complex instruction sets

— direct implementation of HLL statements

e case statement?
e array or record reference?

May be targeted to specific high level
language

— may not be so good for others

Many addressing modes

Many data Vax11/780

types char string, float, int, leading separate string,
numeric string, packed decimal string, string,
trailing numeric string, variable length bit field

.

4
"'!-*.r-i.“-" T4
.

L}
¥
1
¥
N
s
]
N
(]

- - o a‘
ET4140 -..]..T:!_-
L ey B
e

- - o a‘
ET4140 -..]..T:!_-
L ey B
e

'l
FLEE
e

i
o

warl 10/10/2000 Copyright Teemu Kerola 2000 25

e
I:!"l'

==
= E

Large Register File

 Overlapping register windows [Fig-12.1
—fixed max nr (6?) of subroutine parameters
— fixed max nr of local variables

— function return values are directly accessible to
calling routine in temporary registers

* NO copying needed

' 10/10/2000 Copyright Teemu Kerola 2000

Problems with
Large Register Files

= » What if run out of register sets?
& — save & restore values from memory

— hopefully not very common
o call stacks are usually not very deep!
e find out from studies what is enough usually

e Global variables

— store them always in memory?
— use another, separate register file?

Fig. 12.2

i 10/10/2000 Copyright Teemu Kerola 2000

o
L=

T Al ik
ll'r' e B !‘-_I.-i.':-l : Sy
iy =3 i
- -l‘l-l!flll:-l:l- ot ey

by - :.:!'!'-l::

e Would it be better to use the same
real estate (chip area) as cache?
— register files have better locality
— caches are there anyway

— caches solve global variable problem
naturally
* no compiler help needed

— accessing register filesis faster

i 10/10/2000 Copyright Teemu Kerola 2000

Register Filesvs. Cache

Table 12.5

Register Allocation

--1-; o Goal: Prob(operand in register) = high
o ﬁ Symbolic register: any quantity that could
© beinregister
- * Allocate symbolic regsto real regs

— If some symbolic regs are not used in same time
Intervals, then they can be assigned to the same
real regs

— use graph coloring problem to solve reg
allocation problem

s
IZrdre 10/10/2000 Copyright Teemu Kerola 2000

Graph Coloring Problem

Given a graph with connected nodes, assign
n colors so that no neighboring node has the

same color

— topology

— NP complete problem
Application to register allocation
— node = symbolic register

— connecting line = simultaneous usage
— n colors = n registers

s
Zriret 10/10/2000 Copyright Teemu Kerola 2000

How Many Registers Needed?

= * Usually 32 enough
% _moreb longer register addressin instruction
— more b no real gain in performance

+ » Lessthan 167
— Register allocation becomes difficult

— not enough registers
P store more symbolic registers in memory
P slower execution

=T T
e
o

o] o i

[TR iyl
i
- .
, b |
Wit y
r g oyl
-

' ** 10/10/2000 Copyright Teemu Kerola 2000

RISC Architecture 4

Complete one instruction per cycle

— read reg operands, do AL U, store reg result
— all ssimple instructions

Register to register operations

— |oad-store architecture

Simple addressing modes

— easy to compute effective address

Simple instruction formats

— easy to load and parse instructions
— fixed length

thmril 10/10/2000 Copyright Teemu Kerola 2000

RISC vs. CISC (8)

Fixed instruction length (32 bits)
Very few addressing modes

No indirect addressing

L oad-store architecture

— only load/store instructions access memory
At most one operand in memory
Aligned data
At least 32 addressable registers
At least 16 FP registers

Table 12.8

10/10/2000 Copyright Teemu Kerola 2000

RISC & CISC United?

Pentium |1, CISC architecture

Each complex CISC instruction translated
during execution (in CPU) into multiple
fixed length ssmple micro-operations

Lower level Implementation is RISC,
working with RISC micro-ops

Could CPU arealtime be better spent
without this trandation?

— Who wants to try? Transmeta Corporation?
— Why? Why not?

i , 10/10/2000 Copyright Teemu Kerola 2000

RISC & CISC United? ©)

L « Crusoe (by Transmeta)
" —CISC architecture (= Intel) visible to outside
= « Each complex CISC instruction translated
- . during execution (in separate trandlation
with optimized code generation) Into
multiple fixed length smple micro-
operations

e Lower level implementation is RISC,
working with RISC micro-ops

Lt ._,"'r-_::!". : E
i _;Hi = 10/10/2000 Copyright Teemu Kerola 2000

-- End of Chapter 12: History and RISC --

-

izl

= -- d ')
a ks tl.‘l
-y

10/10/2000 Copyright Teemu Kerola 2000

