Computer Organization |1

04/10/2000

CPU Structure and Function

General CPU Organization «

* ALU ,
Ch 11
— does al real work
* Registers
General Organisation — data stored here
Registers * Internal CPU Bus
Instruction Cycle « Control More in Chapters 14-15 |
Pipdining — determines who does what when
Branch Prediction — driven by clock
Interrupts — uses control signals (wires) to control what
every circuit isdoing at any given clock cycle
04/10/2000 Copyright Tesmu Kerola 2000 1 04/10/2000 Copyright Teemu Kerola 2000 2
User Visible Registers

Register Organisation ()
* Registers make up CPU worklmJ
— User visible registers R2;
» accessible directly viainstruction:
— Control and status registers m
* may be accessible indirectly viain i
» may be accessible only internally m
* Internal latchesfor temporary storage
during instruction execution
— E.g., ALU operand either from constant in

instruction or from machine register

04/10/2000 Copyright Teemu Kerola 2000 3

¢ Varies from one architecture to another
* General purpose
— Data, address, index, PC, condition,
« Data
— Int, FP, Double, Index
e Address
* Segment and stack pointers
— only privileged instruction can write?
« Condition codes
— result of some previous ALU operation

04/10/2000 Copyright Teemu Kerola 2000 4

Control and Status Registers
« PC
— next instruction (nat current!)
— part of process state I_'__—m|
¢ IR, Instruction (Decoding) Register 9+
— current instruction
* MAR, Memory Address Register
— current memory address
* MBR, Memory Buffer Register
— current data to/from memory
» PSW, Program Status Word
— what is allowed? What is going on?
— part of process state

04/10/2000 Copyright Tesmu Kerola 2000 5

PSW - Program Status Word ¢

 Sign, zero?

* Carry (for multiword ALU ops)?

* Overflow?

« Interrupts that are enabled/disabled?
 Pending interrupts?

« CPU execution mode (supervisor, user)?
« Stack pointer, page table pointer?

/O registers?

04/10/2000 Copyright Teemu Kerola 2000 6

Chapter 11, CPU Structure and Function

Computer Organization |1 04/10/2000

Instruction Cycle Pipeline Example lliukuhihng) |
. . . - e Laundry Example (David A. Patterson)
 Basiccyclewith mterruit handling Fig. 11.4 « Ann, Brian, Cathy, Dave
« Indirect cycle each have one load of clothes

to wash, dry, and fold

» DataFlow
Figs 11.7-9 —
- CPU, Bus, Memory « Washer takes 30 minutes
« DataPath ,
—inside CPU « Dryer takes 40 minutes E_’
» “Folder” takes 20 minutes °
04/10/2000 Copyright Tesmu Kerola 2000 7 04/10/2000 Copyright Teemu Kerola 2000 8
Sequential Laundry ¢) Pipelined Laundry
Mid-
6 IPM 7 8 . 9 10 11 niq)ht 6 R|M 7 8 9 10
g0 30 40 20 30 40 20 30 40 L
;I; .’] Time for one load . ’ 0 40 40 20 Iime for ane load |
k RIS A G
of| =2 e N
rlle .IE’ JF Throughput *| Throughput
d i j— o=’ - Average speed
» Sequential laundry takes 6 hours for 4 loads m
« If they learned pipelining, how long would laundry take? * Pipelined laundry takes 3.5 hours for 4 loads
04/10/2000 Copyright Teemu Kerola 2000 9 04/10/2000 Copyright Teemu Kerola 2000 10
Pipelining Lessons | Pipelining L NS ¢
* Pipelining doesn’t help « Unbalanced lengthsof pipe | 6AM—7—s—v—
latency, stages reduces speedup T

of singletask, it helps

throughput of entire
workload

Pipeline rate limited by
slowest, pipeline stage

» May need more resources

—Enough electrica current
to run both washer and
dryer smultaneously?

—Need to have at least

» Multiple tasks operating 2 people present all
simultaneously the time?
» Potential speedu ;' » Timeto “fill” pipelineand <
= Number pipe stages TIOPEUTUS timeto “drain” it reduces dfsin >
speedup
04/10/2000 Copyright Tesmu Kerola 2000 11 04/10/2000 Copyright Teemu Kerola 2000 12

Chapter 11, CPU Structure and Function 2

Computer Organization |1

04/10/2000

2-stage Instruction Execution
Pipeline «

« Good: instruction pre-fetch at the sametime
as execution of previousinstruction

Bad: execution phaseislonger,

I.e., fetch stageis sometimesidle

« Bad: Sometimes (jump, branch) wrong
instruction is fetched

— every 6t instruction?

Not enough parallelism b more stages?

.

04/10/2000 Copyright Tesmu Kerola 2000 13

Another Possible
Instruction Execution Pipeline

* FE - Eetch instruction

DI - Decode instruction

» CO- Calculate gperand effective addresses
FO - Eetch gperands from memory

 El - Execute Ingtruction

WO - Write gperand (result) to memory

04/10/2000 Copyright Teemu Kerola 2000 14

Pipeline Speedup ¢

Speedup= THEIT = 54/14 =386 < 6! m
Timeg,
* Not every instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
—unused stage b CPU idle (execution “bubble”)

04/10/2000 Copyright Teemu Kerola 2000 15

Pipeline Execution Time ¢

» Timeto execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
— extra latches to store intermediate results

» Timeto execute 1000 instructions (seconds) is
shorter than that for non-pipelined machine,
l.e,
Throughput (instructions per second) for pipelined
machineis better (bigger) than that for non-
pipelined machine

« Isthis good or bad? Why?

04/10/2000 Copyright Teemu Kerola 2000 16

Pipeline Speedup Problems

« Some stages are shorter than the others
» Dependencies between instructions

— control dependency
* E.g., conditiona branch decision know only after El

stage %l

04/10/2000 Copyright Tesmu Kerola 2000 17

Pipeline Speedup Problems

nown
+ Dependencies between 9. 1L dfter El
instructions , Sage
— data dependency MUL RETRR3
« E.g,, oneinstruction

A
. UAD RO,AIT iy
depends on some earlier v)

instruction Needed
— structural dependenc! inCO ctang o
 E.g., many instructions $TORE R1VaX4

need the same resource
at the sametime
—eg., memory bus

ADD R2R3VayY
UC <R3 RZR5 ¥
v

Fl

04/10/2000 Copyright Teemu Kerola 2000 18

FO

Chapter 11, CPU Structure and Function

Computer Organization |1

04/10/2000

Cycle Time erhead?
t :max[ti]+d =t mﬂ»d

] fmax gate delay in stage
(min) cycletime

delay in latches between stages
(= clock pulse, or clock cycle time)
gate delay in stagei
» Cycletimeisthe samefor all stages

— time (in clock pulses) to execute the cycle

Pipeline Speedup

instructions, k stages

f instructions, k siages /; = stage ddlay = cydletime
. » L
It;tmg pelined: Tl = nkt (&'pmst Itﬁa?ecweaﬂseﬂgge
would gtill havet cycle time)

Time et I =[7 +(n- Dk

k cycles until 1 cydefor

« Each stage executed in one cycletime e O retons
* Longest stage determines cycletime
04/10/2000 Copyright Tesmu Kerola 2000 19 04/10/2000 Copyright Teemu Kerola 2000 20
Pipeline Speedun .. Branch Problem Solutions
m n ingtructions, k stages . Del ay ed Branch
0 > .

Time T = nkf (pessimistic becavse of — compiler places some useful instructions
not pipelined: = assuming that each stage

would gtill havet cycle time)
Ti —
pilpne]ﬁned: Tk = [k *+(n- 1)}
Speedup l nkt nk

o STT k(- ke (D]

04/10/2000 Copyright Teemu Kerola 2000 21

(1 or more!) after branch (or jump) instructions

— these instructions are almost compl etely
executed when branch decision is known

— less actual work lost @

— can be difficult to do

04/10/2000 Copyright Teemu Kerola 2000 22

Branch Probl. Solutions (contd) «
« Multipleinstruction streams

— execute speculatively in both directions

 Problem: we do not know the branch target
address early!

— if one direction splits, continue each way
— lots of hardware
« speculative results, control
— speculative instructions may delay real work
* bus & register contention?
— need to be able to cancel not-taken instruction
streamsin pipeline

04/10/2000 Copyright Tesmu Kerola 2000 23

Branch Probl. Solutions (contd) o

* Prefetch Branch Target W

— prefetch just branch target instruction

— do not execute it, |.e., do only FI stage

— if branch take, no need to wait for memory
« Loop Buffer

— keep n most recently fetched instructionsin
high speed buffer inside CPU

— works for small loops (at most n instructions)

04/10/2000 Copyright Teemu Kerola 2000 24

Chapter 11, CPU Structure and Function

Computer Organization |1

04/10/2000
Branch Probl. Solutions (contd) e Branch Address Prediction o
* Branch Prediction
— guess (intelligently) which way branch will go « Itisnot enough to know whether branch is
— fixed prediction: takeit, do not take it taken or not
— based on opcode + Must know also branch addressto fetch
« E.g,, BLE ingtruction usually at the end of loop? target instruction
— taken/not taken prediction ‘B h Historv Tabl
« based on previous time this instruction was executed ranch Risory €
« need space (1 bit) in CPU for each (?) branch — state information to guess whether branch will
« end of loop aways wrong twice! be taken or not
— extension based on two previous time execution — previous branch target address
—need more space (2 bits) — stored in CPU for each (?) branch
04/10/2000 Copyright Tesmu Kerola 2000 25 04/10/2000 Copyright Teemu Kerola 2000 26
Branch History Table CPU Example: Po
Cached m « User Visible Registers !
L i — 32 genera purpose regs, each 64 bits
— entriesonly for most recent branches « Exception reg (XER), 32 bits
» Branch ingtruction address, or tag bits for it — 32 FPregs, each 64 bits
« Branch taken prediction bits (2?) . :
 Target address (from previous time) or complete bra:iﬁi:ifgnr:st(rfil:srg;)sytzsblts Jﬁ@bl-e——lrl—3—|
target ingtruction? -
« Wh g hed » Condition, 32 bits
y cac — 8fields, each 4 bits
— expensive hardware, not enough space for all — identity given in instructions
possible branches * Link reg, 64 bits
— at lookup time check first whether entry for - Eg, retum address
correct branch instruction : Coué‘t “?93 64 bt'ts
— E.g., loop counter
04/10/2000 Copyright Teemu Kerola 2000 27 04/10/2000 Copyright Teemu Kerola 2000 28

CPU Example: PowerPC

* Interrupts

_ cause %' » Machine State Register, 64 bits Q
« system condiition or event eIl — bit 48: external (1/0) interrupts enabled?
« instruction — bit 49: privileged state or not
— bits 52& 55: which FP interrupts enabled?
— bit 59: data address translation on/off
— bit 63: big/little endian mode
» Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

CPU Example: PowerPC

04/10/2000

Copyright Tesmu Kerola 2000 04/10/2000

Copyright Teemu Kerola 2000 30

Chapter 11, CPU Structure and Function

Computer Organization |1

04/10/2000

* Save return PC to SRRO

» Copy relevant areas of MSR to SRR1
» Copy additional interrupt info to SRR1

» Copy fixed new value into MSR
— different for each interrupt
— address trandation off, disable interrupts

origind MSR

04/10/2000 Copyright Tesmu Kerola 2000

Power PC Interrupt Invocation

Table 11.6

— current or next instruction at the time of interrupt

 Copy interrupt handler entry point to PC
— two possible handlers, selection based on bit 57 of

31

Power PC Interrupt Return

* Return From Interrupt (rfi) instruction
— privileged

 Rebuild original MSR from SRR1

 Copy return address from SRRO to PC

04/10/2000 Copyright Teemu Kerola 2000 32

’—_-——'1— — 5]|

= 1= T =
= —
flli—= _t o ol O
= Au N | o P Qe o 1000
T ¥ ! Ej i T
04/10/2000 Copyright Teemu Kerola 2000 33

Chapter 11, CPU Structure and Function

