Computer Organization |1 04/10/2000

CPU Structure and Function
Ch 1l

General Organisation
Registers
Instruction Cycle
Pipelining
Branch Prediction
|nterrupts

04/10/2000 Copyright Teemu Kerola 2000 1

General CPU Organization

* ALU Fig.11.1
— doesall real work
* Registers Fig 112
— data stored here
* Internal CPU Bus
» Control \More in Chapters 14-15 |

— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit isdoing at any given clock cycle

04/10/2000 Copyright Teemu Kerola2000 2

Chapter 11, CPU Structure and Function

Computer Organization |1 04/10/2000

Register Organisation

» Registers make up CPU work space
— User visible registers ADD R1,R2R3
* accessible directly viainstructions
— Control and status registers BNeq Loop
* may be accessible indirectly via instructions
* may be accessible only internally |y exception
* Internal latches for temporary storage
during instruction execution

— E.g., ALU operand either from constant in
Instruction or from machine register

04/10/2000 Copyright Teemu Kerola 2000 3

User Visible Registers

Varies from one architecture to another
Genera purpose

— Data, address, index, PC, condition,

» Data

— Int, FP, Double, Index

Address

Segment and stack pointers

— only privileged instruction can write?
Condition codes

— result of some previous ALU operation

04/10/2000 Copyright Teemu Kerola2000 4

Chapter 11, CPU Structure and Function 2

Computer Organization |1 04/10/2000

Control and Status Registers ¢
e PC

— next instruction (not current!)

— part of process state

IR, Instruction (Decoding) Register
— current instruction

MAR, Memory Address Register

— current memory address

MBR, Memory Buffer Register

— current data to/from memory

PSW, Program Status Word

— what is alowed? What is going on?

— part of process state

Fig. 11.7

04/10/2000 Copyright Teemu Kerola 2000 5

PSW - Program Status Word @

« Sign, zero?

o Carry (for multiword ALU ops)?

e Overflow?

* Interrupts that are enabled/disabled?

* Pending interrupts?

» CPU execution mode (supervisor, user)?
« Stack pointer, page table pointer?

* |/Oregisters?

04/10/2000 Copyright Teemu Kerola2000 6

Chapter 11, CPU Structure and Function 3

Computer Organization |1 04/10/2000

Instruction Cycle

» Basic cycle with interrupt handling Fig. 11.4
 Indirect cycle Figs11.5-6
e DataFlow _

— CPU, Bus, Memory Fgs11.7-9
o DataPath _

o Fig 14.5

—inside CPU

04/10/2000 Copyright Teemu Kerola 2000 7

Pipeline Example diukubibng)

» Laundry Example (David A. Patterson)
* Ann, Brian, Cathy, Dave
each have one load of clothes A :
to wash, dry, and fold

=
» Washer takes 30 minutes
- r°=
* Dryer takes 40 minutes p—
* “Folder” takes 20 minutes g
04/10/2000 Copyright Teemu Kerola2000 8

Chapter 11, CPU Structure and Function 4

Computer Organization |1 04/10/2000

Sequentia Laundry
Mid-
! Time g
—
— 30 40 20 30 40 20 30 40 20 30 40 20
T - | -)
2 K ﬁ | 14 Time for oLnaet::]zz(; (Viive?)
Kk = 2 |1.5 hours per load |
T50%
o = & |0.67 loads per hour |
| T
e e)
* Sequentia laundry takes 6 hours for 4 loads
* If they learned pipelining, how long would laundry take?
04/10/2000 Copyright Teemu Kerola 2000 9
Pipelined Laundry o,
6 PM 7 8 9 10
[>
Tiqe
] e AT £0 40 40 20 Time for one load
T) = ntnnr‘y
a .
= T
k = a |—1—L5-Loads-pé!-haur—|
o L—“ﬁ’ Throughput
r O| = %’
d . Average speed
? § ﬁ% Moy [<aY="="a)
1.5 load per hour
* Pipelined laundry takes 3.5 hours for 4 loads
04/10/2000 Copyright Teemu Kerola2000 10

Chapter 11, CPU Structure and Function 5

Computer Organization |1

Pipelining Lessons

* Pipeining doesn't help
|atency
of single task, it helps
throughput of entire
workload

 Pipeline rate limited by
slowest pipeline stage

» Multiple tasks operating
simultaneoudly

6|PM 7

8 9

30 40 40 40 40 20

N >
Time

» Potential speedup

= Number pipe stages

(nopeutus)

04/10/2000 Copyright Teemu Kerola 2000

11

Pipelining Lessons

» Unbalanced lengths of pipe
stages reduces speedup

» May need more resources
— Enough electrical current
to run both washer and
dryer smultaneously?
— Need to have at least
2 people present all
the time?

» Timeto “fill” pipeline and
timeto “drain” it reduces
speedup

04/10/2000 Copyright Teemu Kerola2000

12

Chapter 11, CPU Structure and Function

04/10/2000

Computer Organization |1 04/10/2000

2-stage Instruction Execution
Pi pel Ine Fig. 11.10

» Good: instruction pre-fetch at the same time
as execution of previous instruction

» Bad: execution phaseislonger,
|.e., fetch stage is sometimesidle

» Bad: Sometimes (jump, branch) wrong
instruction is fetched

— every 6h ingtruction?
* Not enough parallelism b more stages?

04/10/2000 Copyright Teemu Kerola 2000 13

Another Possible
| nstruction Execution Pipeline

FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

El - Execute Instruction

WO - Write operand (result) to memory

Fig-11.11

04/10/2000 Copyright Teemu Kerola2000 14

Chapter 11, CPU Structure and Function 7

Computer Organization |1 04/10/2000

Pipeline Speedup

*
No pipeline, 9 instructions 2°6 » |54 time units

— : : Fig. 11.11 : ;
6 stage pipeline, 9 instructions | ———— | 14 time units

Speedup= LMEss— =54/14=3.86 <6!
Time oy (nopeutus)
* Not every instruction uses every stage
— seria execution actually even faster
— Speedup even smaller
— will not affect pipeline speed
— unused stage b CPU idle (execution “bubble”)

04/10/2000 Copyright Teemu Kerola 2000 15

Pipeline Execution Time ¢

» Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine

— extralatches to store intermediate results

» Timeto execute 1000 instructions (seconds) is
shorter than that for non-pipelined machine,
l.e,
Throughput (instructions per second) for pipelined
machine is better (bigger) than that for non-
pipelined machine

* Isthisgood or bad? Why?

04/10/2000 Copyright Teemu Kerola2000 16

Chapter 11, CPU Structure and Function 8

Computer Organization |1

Pipeline Speedup

— control dependency

stage

Problems

» Some stages are shorter than the others
» Dependencies between instructions

Fig. 11.12

Fig. 1113

04/10/2000 Copyright Teemu Kerola 2000

* E.g., conditiona branch decision know only after El

17

Pipeline Speedup Problems

need the same resource
at the sametime

ADD R2R3\VaY
MUL _R3RARS W

. Known
« Dependencies between Hg 1112 / after El
Instructions FE
— data dependency MUL R4,R2.R3
* E.g,, oneingtruction _ | OAD RE.ATB(RT)
dependson some earlier v’
instruction Needed
— structural dependency inCostage o
* E.g., many instructions STORE RLVarX A

N

—e.g., memory bus

04/10/2000 Copyright Teemu Kerola2000

v
Fi

FO

18

Chapter 11, CPU Structure and Function

04/10/2000

Computer Organization |1 04/10/2000

Cycle Time verhead?
t =max|t,|[+d=t_+d >>d

1max gate delay in stage
(min) cycletime
delay in latches between stages
(= clock pulse, or clock cycle time)

gate delay in stage i
* Cycletimeisthe samefor all stages
— time (in clock pulses) to execute the cycle
 Each stage executed in one cycletime
» Longest stage determines cycle time

04/10/2000 Copyright Teemu Kerola 2000 19

Pipeline Speedun

/ ninstructions, k stages

ninstructions k stages 14&9%@-&}’;@9%14%
»
Time T = nkt (pessimistic because of

not pipelined: ' °1 assuming that each stage
would still havet cycle time)

Time Tk = gk + (n - 1)][

pipelined: \
k cycles until 1 cyclefor
1st instruction each of the rest
completes (n1) instructions
04/10/2000 Copyright Teemu Kerola2000 20

Chapter 11, CPU Structure and Function 10

Computer Organization |1 04/10/2000

Pipeline Speedup

n instructions, k stages
n ingtructions, k stages / t = stage delay = cycletime

Time T = nkt (pessimistic because of
not pipelined: "1 assuming that each stage

would still havet cycletime)

M T = [k +(n- 1)][

pipelined:
Speedup _ T1 _ nkt _ nk
K sages S T, [k+(-D} [k+(n- D]
Fig. 11.14
10200 Copyrigh Teemukesola2000 2

Branch Problem Solutions

» Delayed Branch

— compiler places some useful instructions
(1 or more!) after branch (or jump) instructions

— these ingtructions are almost compl etely
executed when branch decision is known

— less actual work lost
— can be difficult to do

Fig. 127

04/10/2000 Copyright Teemu Kerola2000 22

Chapter 11, CPU Structure and Function 11

Computer Organization |1 04/10/2000

Branch Probl. Solutions (contd) «

» Multiple instruction streams

— execute speculatively in both directions

 Problem: we do not know the branch target
address early!

— if one direction splits, continue each way

— lots of hardware
* gpeculative results, control

— gpeculative instructions may delay real work
* bus & register contention?

— need to be able to cancel not-taken instruction
streamsin pipeline

04/10/2000 Copyright Teemu Kerola 2000 23

Branch Probl. Solutions (contd)

* Prefetch Branch Target |BM 360/91 (1967)
— prefetch just branch target instruction
— do not executeit, |.e., do only Fl stage
— if branch take, no need to wait for memory

» Loop Buffer

— keep n most recently fetched instructions in
high speed buffer inside CPU

— works for small loops (at most n instructions)

04/10/2000 Copyright Teemu Kerola2000 24

Chapter 11, CPU Structure and Function 12

Computer Organization |1 04/10/2000

Branch Probl. Solutions (contd)
» Branch Prediction
— guess (intelligently) which way branch will go
— fixed prediction: take it, do not take it
— based on opcode
» E.g., BLE instruction usually at the end of loop?
— taken/not taken prediction
* based on previous time this instruction was executed
* need space (1 bit) in CPU for each (?) branch
* end of loop aways wrong twice!
— extension based on two previous time execution

— need more space (2 bits)
Fig. 11.16
04/10/2000 Copyright Teemu Kerola 2000 25
Branch Address Prediction g

* |t isnot enough to know whether branchis
taken or not

* Must know also branch address to fetch
target instruction
» Branch History Table

— dtate information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU for each (?) branch

04/10/2000 Copyright Teemu Kerola2000 26

Chapter 11, CPU Structure and Function 13

Computer Organization |1 04/10/2000

Branch History Table

» Cached PowerPC 620

— entries only for most recent branches
 Branch instruction address, or tag bits for it
* Branch taken prediction bits (27?)
 Target address (from previous time) or complete
target instruction?

* Why cached

— expensive hardware, not enough space for al
possible branches

— at lookup time check first whether entry for
correct branch instruction

04/10/2000 Copyright Teemu Kerola 2000 27

CPU Example: PowerPC
» User Visible Registers Fig 1122
— 32 genera purpose regs, each 64 bits
» Exception reg (XER), 32 hits
— 32 FP regs, each 64 bits
* FP status & control (FPSCR), 32 bits | +1411 2
— branch processing unit registers

Fig 11.23a

» Condition, 32 hits]
_ 8fields, each 4 bits Fig. 11.23b
— identity givenininstructions Tahle 11 4

* Link reg, 64 bits
— E.g., return address

» Count regs, 64 bits

- E.g., loop counter

04/10/2000 Copyright Teemu Kerola2000 28

Chapter 11, CPU Structure and Function 14

Computer Organization |1 04/10/2000

CPU Example: PowerPC
* Interrupts
— cause
« system condition or event Table11.5
* instruction
04/10/2000 Copyright Teemu Kerola 2000 29

CPU Example: PowerPC

» Machine State Register, 64 bits Table 11.6
— bit 48: externd (1/O) interrupts enabled?
— hit 49: privileged state or not
— bits 52& 55: which FP interrupts enabled?
— bit 59: data address trand ation on/off
— hit 63: big/little endian mode
» Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

04/10/2000 Copyright Teemu Kerola2000 30

Chapter 11, CPU Structure and Function 15

Computer Organization |1 04/10/2000

Power PC Interrupt Invocation

« Save return PC to SRRO Table11.6
— current or next instruction at the time of interrupt

Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR1

Copy fixed new vaue into MSR
— different for each interrupt
— address trangdlation off, disable interrupts

Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

04/10/2000 Copyright Teemu Kerola 2000 31

Power PC Interrupt Return

Tahle116

* Return From Interrupt (rfi) instruction
— privileged

* Rebuild original MSR from SRR1

» Copy return address from SRRO to PC

04/10/2000 Copyright Teemu Kerola2000 32

Chapter 11, CPU Structure and Function 16

Computer Organization |1 04/10/2000

-- End of Chapter 11: CPU Structure --

Tlbh Edi Doarmt wa

m e o m o D stage pipelined version of datapath

(Fig. 6.12)
3]

T

L

B
."Fl"'
E]]
b |
_""ll’- ="
I'_.-"

(Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

04/10/2000 Copyright Teemu Kerola 2000 33

Chapter 11, CPU Structure and Function 17

