CPU Structure and Function

Ch1ll

General Organisation
Registers

Instruction Cycle
Pipelining
Branch Prediction
|nterrupts

04/10/2000 Copyright Teemu Kerola 2000

General CPU Organization

ALU
— does all real work

Registers Fig. 11.2
— data stored here

Internal CPU Bus

Control More in Chapters 14-15
— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit isdoing at any given clock cycle

Fig. 11.1

i 04/10/2000 Copyright Teemu Kerola 2000

Ll et e e
Ly :
1t '
.'_'.'!'1- '

"'.'-.?-" Ry - u-'F“:'-.?!'
'\-'J'-Elflilh IR I\-'J-E
[T] |r_u,: .-._1|-.-||.'|.|

Register Organisation

- « Registers make up CPU work space
= — User visible registers ADD R1,R2,R3
o accessible directly viainstructions

— Control and status registers BNeg Loop
e may be accessible indirectly viainstructions
» may be accessible only internally S/ excention

* Internal latches for temporary storage
during Instruction execution

— E.g., ALU operand either from constant in
Instruction or from machine register

el i 04/10/2000 Copyright Teemu Kerola 2000

User Visible Registers

Varies from one architecture to another
General purpose

— Data, address, index, PC, condition,
Data

— Int, FP, Double, Index

Address

Segment and stack pointers

— only privileged instruction can write?

Condition codes
— result of some previous ALU operation

424 04/10/2000 Copyright Teemu Kerola 2000

Control and Status Registers

PC
— next instruction (not current!)
— part of process state

IR, Instruction (Decoding) Register
— current instruction

MAR, Memory Address Register

— current memory address

MBR, Memory Buffer Register

— current data to/from memory

PSW, Program Status Word

— what is allowed? What is going on?

— part of process state

v 04/10/2000 Copyright Teemu Kerola 2000

PSW - Program Status Word ¢

Sign, zero?

Carry (for multiword ALU ops)?
Overflow?

Interrupts that are enabled/disabled?

Pending interrupts?

CPU execution mode (supervisor, user)?
Stack pointer, page table pointer?

/O registers?

' 04/10/2000 Copyright Teemu Kerola 2000

Instruction Cycle

Basic cycle with interrupt handling
Indirect cycle [FIgS1L56
Data Flow

— CPU, Bus, Memory

Data Path
— Inside CPU

Figs11.7-9

Fig 14.5

04/10/2000 Copyright Teemu Kerola 2000

Pipeline Example [itikifiie

Laundry Example (David A. Patterson)
Ann, Brian, Cathy, Dave

each have one load of clothes ‘ ‘ ‘ ‘

to wash, dry, and fold

Washer takes 30 minutes m

Dryer takes 40 minutes m

“Folder” takes 20 minutes .

&

v 04/10/2000 Copyright Teemu Kerola 2000

Sequential Laundry «
. 1d-

8 9 10 11 night
>

Time

30 40 20 30 40 20 30 40 20 30 40 20’

Time for one load - -
P
7 Latency (vilve?)

1.5 hours per load

0.67 loads per hour

‘ Throughput

=
MRt
. %
&
s o S
TET
I'Tl" ‘I1'-‘

o Seguential laundry takes 6 hours for 4 loads
o If they learned pipelining, how long would laundry take?

3 J 04/10/2000 Copyright Teemu Kerola 2000

14 38 9 10

>

Time

e

30 40 40 40 40 20 Time for one load

Latency

90 minutes per load

1.15 loads per hour
Throughput

Average speed
Max speed?
1.5 load per hour
* Pipelined laundry takes 3.5 hours for 4 loads

04/10/2000 Copyright Teemu Kerola 2000 10

:._-i";. 2 4

- . =
';J'IE'TI'EI:I o
= e

§ 8 o e [0 -l

R G
P ﬁ'.l-':-'. i Lk 2N
Tﬁ:-:-*-' - :: - "{-1-:1‘

Pipelining Lessons

Pipelining doesn’t help
|latency

of single task, it helps
throughput of entire
workload

Pipeline rate limited by
slowest pipeline stage
Multiple tasks operating
simultaneously

Potential speedup
= Number pipe stages

6|PI\/I 7 38 9

| >

Time

30 40 40 40 40 20

(nopeutus)

7 04/10/2000 Copyright Teemu Kerola 2000

thsof pipe| 6pPM 7 8 9
- stages reduces speedup :

g e May need more resources 30 40 40 40 40 20
=% — Enough electrical current
to run both washer and

dryer ssmultaneously?

— Need to have at |east
S the time?
= ¥ Timeto“fill" pipeline and
“2ar timeto “drain” it reduces

- >
Time

speedup

T “Etrr*** 04/10/2000 Copyright Teemu Kerola 2000

~ 2-stage Instruction Execution
. Pipeline

Fig. 11.10

Good: Instruction pre-fetch at the same time
as execution of previous instruction

Bad: execution phase islonger,
|.e., fetch stage Is sometimes idle

Bad: Sometimes (Jump, branch) wrong
Instruction is fetched

— every 61 instruction?
Not enough parallelism P more stages?

i , 04/10/2000 Copyright Teemu Kerola 2000

Another Possible
Instruction Execution Pipéeline

FE - Fetch instruction

DI - Decode Instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

El - Execute Instruction

WO - Write operand (result) to memory

Fig. 11.11

' 04/10/2000 Copyright Teemu Kerola 2000

Pipeline Speedup
9

*
No pipeling, 9 instructions 0 » 54 time units

— _ _ Fig. 11.11 _ _
6 stage pipeline, 9 instructions » 14 time units

Speedup= MEgd =54/14=386 <6!
Time e, (nopeutus)

* Not every Instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
— unused stage P CPU idle (execution “bubble’)

04/10/2000 Copyright Teemu Kerola 2000 15

Pipeline Execution Time

y.: * Timeto execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
— extralatches to store intermediate results

Ee | « Timeto execute 1000 instructions (seconds) Is

shorter than that for non-pipelined machine,
l.e,
Throughput (instructions per second) for pipelined
machine Is better (bigger) than that for non-
=i pipelined machine
17 E‘; |sthisgood or bad? Why?

Lt ._,"'r-_::!' - ¥
i _;ﬁi e 04/10/2000 Copyright Teemu Kerola 2000

 E.g., conditional branch decision know only after El

Copyright Teemu Kerola 2000

o)
5
o
O
all
o
g
)
-
=
2
all

— control dependency

e Some stages are shorter than the others
* Dependencies between instructions

)
Tt
il
i

A 04/10/2000

-
e
177
ol Ve g 8
Hos il
L=
Li""'
oL

o

~

L

o
i

ais

sjmny g
Lkl ST B

A
e L T i
T 1 s -

Bl
"

A
b

f o et
i
[s
B =

Pipeline Speedup Problems

_ Known

* Dependencies between

instructions Setlc
— data dependency MUL R1,R2,R3

:) : T,
E.g., oneinstruction LOAD R6,ArrB(R1)

depends on some earlier
Instruction Needed

— structural dependency InCOstage g

e E.g., many instructions STORE R1.VarX a
need the same resource ADD R2R3Vay

a the same time MUL R3R4R5 % _
—e.g., memory bus LS FO

FI

04/10/2000 Copyright Teemu Kerola 2000 18

Cycle Time

o’

A
Tmax gate delay In stage
(min) cycletime
delay in latches between stages

(= clock pulse, or clock cycletime)

gate delay in stage |
e Cycletimeisthe samefor all stages
— time (in clock pulses) to execute the cycle
» Each stage executed In one cycle time

* Longest stage determines cycle time

04/10/2000 Copyright Teemu Kerola 2000

Pipeline Speedup

n instructions, k stages
n instructions, k stages / t = stage delay = cycletime

Time (pessmistic because of
not pipelined: assuming that each stage
would still havet cycletime)

Time
pipelined:

k cycles until 1 cyclefor
1st instruction each of the rest
completes (n-1) instructions

04/10/2000 Copyright Teemu Kerola 2000

T i
i3

-\."E. L
i

1]
adh
or
o e e
ey 5

it

Pipeline Speedup «
n instructions, k stages
n instructions, k stages / t = stage delay = cycletime

Time (pessmistic because of
not pipelined: assuming that each stage
would still havet cycletime)

=]

4%
L i e
A
'-'IJ'"'

ik
o
EA

1k

-\.";_'l 1 i
s

- s

S
M

LAY

=i
- ."..l' * L
S T

Rt

ok

-y

#:
R
)

.l

Time

Fig. 11.14

04/10/2000 Copyright Teemu Kerola 2000

Branch Problem Solutions s

* Delayed Branch

Ay e
s el
- 0y 3= L

[TR iyl
i
- .
, b |
Wit y
r g oyl
-

— compiler places some useful instructions
(1 or more!) after branch (or jump) instructions

— these instructions are almost completely
executed when branch decision is known

— |ess actual work lost
— can be difficult to do

Fig. 12.7

' 04/10/2000 Copyright Teemu Kerola 2000

- Branch Probl. Solutions (contd)
i « Multiple instruction streams

— execute speculatively in both directions

e Problem: we do not know the branch target
address early!

— If one direction splits, continue each way

— |ots of hardware
o gpeculative results, control

— gpeculative instructions may delay real work
e bus & register contention?

— need to be able to cancel not-taken instruction
streams in pipeline

thmril 04/10/2000 Copyright Teemu Kerola 2000

_ Branch Probl. Solutions (contd) ¢

= * Prefetch Branch Target ~ [1BM 360/91 (1967)
. prefetch just branch target instruction
— do not execute it, |.e., do only Fl stage
— If branch take, no need to wait for memory
* Loop Buffer

— keep n most recently fetched instructions in
high speed buffer inside CPU

— works for small loops (at most n instructions)

to
sl sviee 04/10/2000 Copyright Teemu Kerola 2000

- Branch Probl. Solutions (contd)

= = | « Branch Prediction

thmril 04/10/2000 Copyright Teemu Kerola 2000

— guess (intelligently) which way branch will go
— fixed prediction: take it, do not take it
— based on opcode

e E.g., BLE instruction usually at the end of |oop?

— taken/not taken prediction
 based on previous time this instruction was executed
 need space (1 bit) in CPU for each (?) branch
 end of loop always wrong twice!
— extension based on two previous time execution
— need more space (2 bits)

Fig. 11.16

Branch Address Prediction ¢

-'1 e |t isnot enough to know whether branch is
4 taken or not

f 51 » Must know also branch address to fetch

target instruction

4 « Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU for each (?) branch

e Jﬂtrr* 04/10/2000 Copyright Teemu Kerola 2000

Branch History Table

e
- * Cached PowerPC 620

— entries only for most recent branches
 Branch instruction address, or tag bitsfor it
» Branch taken prediction bits (27)

e Target address (from previous time) or complete
target instruction?

4 + Why cached
: — expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction

thmril 04/10/2000 Copyright Teemu Kerola 2000

= CPU Example: PowerPC
== o Usar Visible Registers Fig. 11.22

— 32 general purpose regs, each 64 bits
o Exceptionreg (XER), 32 bits

— 32 FP regs, each 64 bits
e FP status & control (FPSCR), 32 bits

— branch processing unit registers

 Condition, 32 bits _
— 8fields, each 4 bits Fig. 11.23b
— identity given in instructions Table 11.4

e Link reg, 64 bits
— E.g., return address

e Count regs, 64 bits
— E.g., loop counter

Fig. 11.23a

Table 11.3

04/10/2000 Copyright Teemu Kerola 2000

=
yrel]

it T b !_-l' e
A symms |-!'\.-!-_|-J-
Ean kST B :-II'\-' '-E

- CPU Example: PowerPC

e |nterrupts

— Ccause
« system condition or event Table11.5
e Instruction

04/10/2000 Copyright Teemu Kerola 2000

CPU Example: PowerPC

= * Machine State Register, 64 bits [Table11.6
- DIt 48: external (1/0O) interrupts enabled?

nit 49: privileged state or not

nits 52& 55: which FP interrupts enabled?
nit 59: data address translation on/off

nit 63: big/little endian mode

o Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

thmril 04/10/2000 Copyright Teemu Kerola 2000

Power PC Interrupt |nvocation

Save return PC to SRRO Table11.6
— current or next instruction at the time of interrupt

Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR1

Copy fixed new value into MSR
— different for each interrupt
— address trandlation off, disable interrupts

Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

04/10/2000 Copyright Teemu Kerola 2000

Power PC Interrupt Return

Table 11.6

e Return From Interrupt (rfi) instruction
— privileged

* Rebuild original MSR from SRR1

e Copy return address from SRRO to PC

04/10/2000 Copyright Teemu Kerola 2000

-- End of Chapter 11:. CPU Structure --

0t o 2| Acrobat Rea__. . __._.,__,
.-'-’5:. '@ EI|'E Edit Docurnent \?'lewr

e O Stage pipelined version of datapath B (Fig. 6.12)

o

e Bl | e

o Read
"] register 1 Pead

Read data 1
Instruction | register 2
Reqisters pagd
e sy
o fiVritE data #
register

Write
data

_ ~ETy DU MO (Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

04/10/2000 Copyright Teemu Kerola 2000 33

