Computer Organization |1

3.11.1999

- Virtua Memor (virtuaali muisti)
Virtua Memory (VM) y
Ch73 Ch7.3
' * Problem: How can | make my (main)
memory as big as my disk drive?
» Answer: Virtual memory
Memory Management — keep only most probably referenced datain
Address Trandation memory, and rest of it in disk
Pagi ng « disk is much bigger and slower than memory
« address in machine instruction may be different
Hardware Support than memory address
VM and Cache « need to have efficient address mapping
« most of data references are for datain memory
Other Problems Often Solved Memory Management Problem
. (@)
with VM)

* If you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

» What if aprocess needs more memory than
thereis?

311.1999 Copyright Teemu Kerola 1099 3

* How much memory for each process?

—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary during the run time?

» How isthat memory managed?
» How isthat memory referenced?

311.1999 Copyright Teemu Kerola 1999 4

Partitioning «

» How much physical memory for each
process?

« Static (fixed) partitioning
— amount of physical memory determined at
process cregtion time
» Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesintime
« due to process requirements (of this process)
« dueto system (l.e., other processes) requirements

311.1999 Copyright Teemu Kerola 1099 5

Static Partitioning

» Equal size - give everybody the same
amount
— fixed size - big enough for everybody
— need more? Can not run!

— internal fragmentation | (sisginen pirstoutuminen) |
» Unequal size
— external fragmentation | (ulkoinen pirstoutuminen) |

311.1999 Copyright Teemu Kerola 1099 6

Chapter 7.3, Virtual Memory

Computer Organization |1

3.11.1999

Dynamic Partitioning
* Process must be able to run with different
amounts of main memory
— all of memory spaceis not in physical memory
* New process?

Address Mapping

Pascal, Java:

(osoitteen muunnos)

— Symbolic Assembler:

while (..) /loop: LOAD RL Y
X=Y+Z, ADD R1,Z

Textual machine language: STORE R1, X

— reduce amount of memory for some (lower —

priority) processes 1312: LOAD R1, 2510 || Execution time:

ADD R1, 2514
 Not enough memory for some process? STORE R1, 2600 || 101312: LOAD R1,102510

— reduce amount of memory for some (lower _ ADD R1,102514

priority) processes (addresses relative to 0) ADD R1,102600
— kick (swap) out some (lower priority) process > (real, actual')

3.11.1999 Copyright Teemu Kerola 1999 7 3.11.1999 Copyright Teemu Kerola 1999 8
Address Mapping ~cs -
logical address Addr M appl ng @

Textual machine language:

1312: LOAD R1, 2510

-\JrlOOOOO?

Execution time:
101312: LOAD R1,102510 or

101312: LOAD R1, 2510 ”
— physical address (constant?)

-Want: Rle— Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

311.1999 Copyright Teemu Kerola 1099 9

* At program load time

— loader

— static address binding (staattinen

. . osoitteiden sidonta)

» At program execution time

—cpu

— with every instruction

— dynamic address binding (dynaaminen

— swapping osoitteiden sidonta)

— virtual memory

311.1999 Copyright Teemu Kerola 1999 10

Swapping (heittovaito)
Keep al memory areasfor al running and
ready-to-run processes in memory
New process

— find continuous memory partition and swap the
processin

» Not enough memory?
— Swap some (lower priority) process out

* Some times can swap in only (runnable)
portions of one process

» Address map: add base address

311.1999 Copyright Teemu Kerola 1999 1

VM Implementation ¢,

* Methods
—base and limit registers
—segmentation
—paging
—segmented paging
» Hardware support

—MMU - Memory Management Unit
« varies with different methods

311.1999 Copyright Teemu Kerola 1999 12

Chapter 7.3, Virtual Memory

Computer Organization |1

3.11.1999

Base and Limit Registers

* Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
code, data, shared data, etc
« BASE and LIMIT registersin MMU
— all addresses|ogical in machine instructions
— address mapping for address (x):
« check: x <LIMIT
« physical address; BASE+x

Segmentation

* Process address space divided into
(relatively large) logical segments
— code, data, shared data, large table, etc

» Eachlogical segment isallocated itsown
continuous physical memory segment

 External fragmentation

* Memory address have two fields

011001 1010110000
segment byte offset (lisgys)

3.11.1999 Copyright Teemu Kerola 1999 13 3.11.1999 Copyright Teemu Kerola 1999 14
Segmentation Address Mapping Paging
* Process address space divided into
* Segment table (relatively small) equal size pages
— maps segment id to physical segment base —nological entities, only physical
address and to segment size

* Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address; base + byte offset

* Each pageisallocated its own physical

page frame in memory
— any page frame will do!

* Internal fragmentation
» Memory addresses have two fields

01100110 10110000

page byte offset | (lisdys)

Paged Address Mapping Paged Address Trandation «
Virtual address ooesstype
* Pagetable Pegetable 1(30

— maps page nr to physical page frame
* Physical address:
—find entry in page table
— physical address: page address + byte offset

311.1999 Copyright Teemu Kerola 1999 17

! Check access
register Page table rights
0:7] 0 rwx rl {rw}

10rwp(14,
Check for 2 A w55 \
valid entry /f # %
Valid entry 14 30
o]

Physical address

Page frame

311.1999 Copyright Teemu Kerola 1099 18

Chapter 7.3, Virtual Memory

Computer Organization |1 3.11.1999

|
Page Fault Pagin
Stop execution a2] g o
- - Virtual address Access type * Physical memory partitioning
Initiate reading . -
page 1 from disk () — discontinuos areas
Page table =t
Schedulenext | register Check access * Pagetables
process to run rights .
- ri {rw} — each process hasits own

. — located in memory

Page 1 read, Check for — can be very big

update page table | | valid entry: \ .

- i « entry for each page in address space

Make orig. not valid!

process : * Inverted page table

ready-to-run| | Schedule orig. process again, Physical address — entry for each page in memory

a the same instruction
3.11.1999 Copyright Teemu Kerola 1999 19 3.11.1999 Copyright Teemu Kerola 1999 20
Address Trandation o Trandation Lookaside Buffer
« MMU doesit for every memory access * “Hit" on TLB?
— code, data — addresstrandationisin TLB - real fast
— more than once per machine instruction! e “Miss’ on TLB?

» Can not access page tables in memory every

— must read page table entry from memory
time - it would be too slow!

— takestime
— too high cost to pay for virtual memory? — cpu waitsidle until it is done
« MMU has a cache of most recent address * Just like normal cache, but for address
translations (osoitteen- mapping
— TLB - Trandation Lookaside Buffer | muunnos- — implemented just like cache
— 99.9% hit ratio? taulukko) — instead of cache line data have physical address
3.11.1999 Copyright Teemu Kerola 1999 21 3.11.1999 Copyright Teemu Kerola 1999 22
Memory Organisation ¢ .
y+rg Memory Pyscd aidres T B Example o
CPU OxO0B6CBE6 046
page offset
[ReadW 12, 0XABOOC7DA|046| tag page frame
= 28 32
teg index 0000:
< 28 4
ABOOC7D [A]
K3 * Correct 0111:
Disk s ?ndgﬁg 1000:

5 ‘\‘ ‘\‘ ‘\‘ ‘\‘ found 1001:. | 1
page ? = 1010:| [ABOOC7D || [00B6CS8ES
table ~u page | page |page | page E@ | [1 5 [

3.11.1999 Copyright Teemu Kerola 1999 23 3.11.1999 Copyright Teemu Kerola 1999 24

Chapter 7.3, Virtual Memory

Computer Organization |1

3.11.1999

TLB and Cache I©)

* Usually address tranglation first

and th()e/n cache lookup
* Cache can be based on virtual addresses

— can do TLB and cache lookup simultaneously

— faster
* Implementations are very similar

— TLB often fully
associative

TLB vs. Cache

TLB Miss

Cache Miss

» CPU waitsidling

¢ HW implementation
« Invisible to process
e Datais copied from

» CPU waitsidling

¢ HW implementation
« Invisible to process
e Datais copied from

memory to TLB memory to cache
— from page table data — from page data
e Delay 4 (or 2 or 8?) « Delay 4 (or 2 or 8?)
clock cycles clock cycles

« optimised for temporal locality

311.1999 Copyright Teemu Kerola 1099 25

311.1999 Copyright Teemu Kerola 1999 %

TLB Miss

TLB Missesvs. Page Faults

Page Fault

« CPU waitsidling

* HW implementation

e Datais copied from
memory to TLB

¢ Delay 4(?)
clock cycles /Egiﬁ

¢ Processis suspended
and cpu executes
some other process

¢ SW implementation

e Datais copied from

disk to memory

* Delay

30ms(?)

311.1999 Copyright Teemu Kerola 1999 27

Virtual Memory Policies ¢
* Fetch policy

— demand paging: only when needed 1st time
— working set: keep those needed in memory
— prefetch: guess and start fetch early

« Placement policy
— any frame for paged VM

« Replacement policy
— local, consider pagesjust for this process
— global, consider pages for al processes
— dirty pages must be written to disk | (likaiset,

3.11.1999 Copyright Teemu Kerola 1999 muutetut)

* Implemented in SW
» HW support

—M = Modified
— R = Referenced

— Other counters?

Page Replacement Policy

— extra bits in each page frame

* set (to 1) with each reference to frame

* reset (to 0) every now and then
—specid (privileged) instruction from OS
—automatically (E.g., every 10 ms)

311.1999 Copyright Teemu Kerola 1999 2

Page Replacement Policies

» OPT - optimal (S;J\gi)r;?t(r)rl\iat;}
* NRU - not recently used
e FIFO - firstinfirst out o5
— 2nd chance Virtua Memory
—clock Management
« Random

* LRU - least recently used
— complex counter needed
* NFU - not frequently used

311.1999 Copyright Teemu Kerola 1099 30

Chapter 7.3, Virtual Memory

Computer Organization |1

3.11.1999

Dynamic Memory Allocation
» Two bounds: L=Lower and U=Upper
* Physical memory split into fixed size pages
At every page fault
— T=Time since previous page fault
—if T<L then give more memory
« 1 page frame? 4 page frames?

— If T>U then take some memory away
« 1 page frame?

— If L<T<U then keep current allocation

311.1999 Copyright Teemu Kerola 1099 3

Trashing ¢ (ruuhkautuminen) Thrashing
CPU 101 « Too high mpl
utilization K
(kayttosuhde) CPU 100% busy * Too few page frames per process
swapping processes! — E.g., only 10007 2000?
Higher mpl No real work is done! — Lessthan its working set
b lessphysical — i . i
memory (moniajoaste) 3. Once aprocessis scheduled, it will
per process! 3 P 5 — very soon reference a page not in memory
mpl (multiprogramming level) — page fault
- How much memory per process? — process switch
- How much memory is needed?
3.11.1999 Copyright Teemu Kerola 1999 31 3.11.1999 Copyright Teemu Kerola 1999
Page Fault Frequency (PFF)

VM Summary

* How to partition memory?

— Static or dynamic size (amount)
» How to allocate memory

— Static or dynamic location
* Address mapping
HW help (TLB) for address trandation
— before or concurrently with cache access?
* VM policies

— fetch, placement, replacement

311.1999 Copyright Teemu Kerola 1099

-- End of Chapter 7.3:Virtua Memory --
= 4

Fig. 5.47 from = - — — -]

Hennessy-Patterson, o Fully assoc,
Computer Architecture | 32 entry
Alpha AXP 21064 I dataTLB
memory hierarchy 8KB,

= direct
Fully assoc, 12 entry _mapp ed,
instruction TLB | &5 256 line
8 KB, direct mapped, | e | 3 (each 32B)
256 line (each 32B) o mes=—— | | datacache
instruction cache

Rt A main memor
2MB, 64K line (each 32B) L | == —I "_'._I_,_ Y
direct mapped, unified “ demd | =

write-back L2 cache

K
TTI999 opyright Teemu Kerola 1999 paging disk (dma)

Chapter 7.3, Virtual Memory

