|
10NS

ICro-operat
ontrolling Execution

ardwired Control

s hyskdi o L

C
D)
S
S =
@
T

ap A
=

T

e

s iy
s Y

dmad

Copyright Teemu Kerola 1999

Hardwi
S fol R

Ay -|1'\‘-|:-1--
[

26.11.1999

What 1s Control ¢

e S0 far, we have shown what happens inside
CPU

— execution of instructions
 opcodes, addressing modes, registers
 |/O & memory interface, interrupts
=« Now, we show how CPU controls these
things that happen
— how to control what gate or circuit should do at
any given time
e control wires transmit control signals
e control unit decides values for those signals

:I 26.11.1999 Copyright Teemu Kerola 1999

|
k[)
M

Micro-operations (; [(mikooperaio)

« Basic operations on which more complex
Instructions are built Fig. 14.1

— each execution phase (e.g., fetch) consists of one or
more sequential micro-ops

each micro-op executed in one clock cycle in some
subsection of the processor circuitry

each micro-op specifies what happens in some area
of cpu circuitry

— cycletime determined by the longest micro-op!
. » Micro-opsfor (different) instructions can be
| executed simultaneously

— non-conflicting, independent areas of circuitry

.,: 26.11.1999 Copyright Teemu Kerola 1999

Instruction Fetch Cycle »

e 4registersinvolved Fig. 11.7
— MAR, MBR, PC, IR
o \What happens?

Address of next instruction isin PC MICro-ops?
"~ Address (MAR) isplaced on addressbus |MAR = (PC)

READ command given to memory READ

Result (from memory) appears on data bus

Data from data bus copied into MBR MBR - (mem)
.. PC incremented by 1 PC- (PC)+1
i New instruction moved from MBRtoIR [IR- (MBR)

e
At

- MBR available for new work

:I 26.11.1999 Copyright Teemu Kerola 1999

Instruction Fetch Micro-ops ¢

e 4 micro-ops
— can not change order

sl: MAR - (PC), READ
s2: MBR = (mem)
s3:. PC- (PC) +1

— s2 must be done after s1 SEIRSTHMBR)

— S3 can be done simultanously with s2

— &4 can be done
with s3, but must

! Assume mem read In one cycle

:q.ﬁﬁ:.

tl:
be done after s2 £2-

P Need 3ticks: /
t3:

Implicit
MAR - (PC), READ
PC- (PC) +1
IR- (MBR)

26.11.1999 Copyright Teemu Kerola 1999

Micro-op Grouping
e Must have proper tl: MAR- (PC)
seguence t22 MBR= (mem)

 No conflicts

— no write to/read from 2 MBR- (mem)

with same register_ 3 IR~ (MBR)
(set?) at the same time

— each circuitry can be
used by only one 3 SBE S (RC) 1
micro-op at atime #8: Rl (Rl + (MBR)
e ALU

i 26.11.1999 Copyright Teemu Kerola 1999

Micro-op Types @

o Transfer datafrom one reg to another

o Transfer datafrom reg to external area

— memory
—1/0

"« Transfer datafrom external to register
 ALU or logical operation between registers

o
-+

i

26.11.1999 Copyright Teemu Kerola 1999

Indirect Cycle

* |nstruction contains indirect address of an
operand, instead of direct operand address

|IR:| opcode | reg addr

|

MBR

MAR = (IRygress)

MBR = (mem) (Replace indirect address
Ragdress 7 (MBRygeresd) by direct address)

26.11.1999 Copyright Teemu Kerola 1999

Interrupt Cycle

o After execution cycletest for interrupts

e If Interrupt bits on, then
— save PC to memory
tl: MBR- (PC)

—Jump to Interrupt t2: MAR - save-address
handler PC -~ routine-address

— or, find out first 3 mem- (MBR)
correct handler for \
this type of interrupt
and then jump to that (need more micro-ops)

— context saved by interrupt handler

implicit - just wait?

Copyright Teemu Kerola 1999

Execute Cycle w

e Different for each op-code

ADD RI1, X tl: MAR- (IRygres)
t2: MBR = (memory)

t3: R1- (R1) + (MBR)

ADD R1L,R2,R3 tl: R1- (R2)+(R3)

JMP LOOP tl PC- (IRyye)

Was this updated in indirect cycl e?/
BZER R1, LOOP t1: If ((R1)=0) then
PC - (IRaddress)

Can this be done in one cycle? /

26.11.1999 Copyright Teemu Kerola 1999

Execute Cycle (contd) «

BSA MySub t: MAR= (IR o)
MBR - (PC)
t2: PC - (IR ygress)
MySub: DC memory = (MBR)

LOAD ... t3: PC- (PC) +1
RET Mm
1%t instruction in MySub+1

Return address stored here

26.11.1999 Copyright Teemu Kerola 1999

Instruction Cycle
e Decomposed to micro-ops

e State machine for processor
— state: execution phase
— sub-state: current group of micro-ops

 |n each sub-state the control signals have

Fig. 14.3

specific values dependent
— on that sub-state

Fig. 14.4

—on IR register fields and flags
e including control signals from the bus

e including values (flags) produced by previous sub-
State

q'flf“ 26.11.1999 Copyright Teemu Kerola 1999
A

Control State Machine ¢

« Each state defines current control signal
values Control sequencing
— determines what happens in next clock cycle

o Current state and current register/flag values

determine next state _
Control execution

e
4 o
AL

58

gtk ey
g} g SEEE-E e

Sares

g =.--1

26.11.1999 Copyright Teemu Kerola 1999

Control Signal Types

e Control dataflow from one register to
another

e Control signalsto ALU
— ALU does aso all logical ops

e Control signalsto memory or I/O devices
— viacontrol bus

26.11.1999 Copyright Teemu Kerola 1999

Control Signal Example

 Accumulator architecture Fig. 14.5

e Control signalsfor given micro-ops
cause micro-ops to be executed |Table 14.1

— setting C, makes value stored in PC to be
copied to MAR in next clock cycle
 C, controls Input Data Strobe for MAR
(see Fig. A.30 for register circuit)
— setting C,, & C, makes memory perform
a READ and value in data bus copied to
MBR in next clock cycle

(0 26.11.1999 Copyright Teemu Kerola 1999
EEs

Example: Intel 8085

|ntroduced 1976
3,5, or 6 MHz, no cache

8 bit data bus, 16 bit address bus
— multiplexed

One 8-bit accumulator

opcode address
LDA MyNumber Ox3A [Ox10A5

OUT #2 O0x2B | 0x02
opcode port

e
4 o
AL

58

o b
g} g SEEE-E e

Sares

g =.--1

26.11.1999 Copyright Teemu Kerola 1999

Example: 18085

Instead of complex data path all data transfers
within CPU go viainternal bus Fig. 14.7

— may not be good approach for superscalar pipelined
processor - bus should not be bottleneck

External signals Table 14.2

Each instruction is 1-5 machine cycles
— one external bus access per machine cycle

Each machine cycleis 3-5 states
Each state is one clock cycle
Example: OUT instruction

_H 26.11.1999 Copyright Teemu Kerola 1999

Harawired
§ Control Logic Implementation o

Initial representation:

Explicit
next state

uencing control: _
> J function

Logic
L ogic representation: equations Programmable
Logic Array

| mplementation:

26.11.1999 Copyright Teemu Kerola 1999

ALUSelB=11

AllLig=ros ALUSelB=11

X: MemtoReg ALUOp=Add
PCSrc

1: ALUSEA
L Wwy Rle\%Wr ExtOp
emtoReg

ALUSEB=11
ALUOp=Add

ALUSelB=01

x: lorD, Mem2Re(
RegDst, ExtOp

1: PCWrCond
ALUSE A

X: PCSrc, lor[Z
I\/Ierr%to’R 2

26.11.1999

-
o
s
-
S
LL
&)
©
)
X
@
Z
—
O
g

le

icyc

Mult
> Datapath

>
>
>
>

>
>

>
>
>
>

Control Logic

26.11.1999

L ogic Equations

Next state from current state Alternatively,
_ State 0 -> Statel prior state & condition
_State 1 -> S2, S6, S8, S10 S4, S5, S7, S8, S9, S11 -> State0

-> Statel
-> State 2
-> State 3
-> State 4

— State 2 ->

— State 3 ->

— State 4 ->State 0
—State 5 -> State 0 State2 & op = SW -> State 5
— State 6 -> State 7 _> State 6
— State 7 -> State O State 6 -> State 7
— State 8 -> State O -> State 8
— State 9-> State 0 State2 & op = JMP -> State 9
— State 10 -> State 11 -> State 10
— State 11 -> State O State 10 -> State 11

. 26.11.1999

Harawired Control Logic

 Circuitry becomes very big and complex
very soon

— may be unnecessarily slow
— simpler is smaller, and thus faster
-« Many lines (states) exactly or amost similar
 Have methodsto find similar lines and
combine them
— not ssimple
— save space, may lose Iin speed

e
4 o
AL

58

gtk ey
g} g SEEE-E e

Sares

g =.--1

26.11.1999 Copyright Teemu Kerola 1999

-- End of Chapter 14: Hardwired Control --

HP 9100 Calculator (1968), 20 kg,
$5000, 16 regs (data or 14 instructions/reg), 4
32Kb ROM, 2208 bit RAM magnetic core memory

- Nk
- . A =

- j—

=

T A R TCR U YU T SR, e

i

.-

f'r'J!"ff.r_-_r_:.lf!I"lll i 7 [L 4 [}

Hardwired Control Logic board http:/Awww.hpmuseum.org/9100c jpg

26.11.1999 Copyright Teemu Kerola 1999 23

