Hazards
|ssue Policy
ster Renaming

oSSOrs
Branch Prediction

10NS
10N

tat

| nstruct

egl

M

B
o

s hyskdi o L

ap A
=

T

e

s iy
s Y

dmad

Copyright Teemu Kerola 1999

VR

Q
O
an
S
Lo
7
D
Q.
73

s e

ks

P e

Ay -|1'\‘-|:-1--
[

24.11.1999

Superscalar Processing
Basic idea: more than one instruction completion
per cycle
Almed at speeding up scalar processing

— use multiple pipelines and Fig. 13.2
not more phases

Many instructions in execution phase
simultaneously

— need paralelism also in earlier & later phases
Multiple pipelines Fig. 13.1
— guestion: when can instruction be executed?

Fetch many instructions at the same time
— memory access must not be bottleneck

_H 24.11.1999 Copyright Teemu Kerola 1999

 Why couldn’t we execute this
' Instruction right now? s Fig. 13.3

» (True) Data Dependency load r4, salary(ré)

CEETop LS mul r2,r4,rl10

* Procedura or Control Dependency (kontrolli-

— even more costlier than with normal rii ppuvuus)
pipeline
— now may waste more than one instruction!
* Resource Conflict
— thereis no available circuit right now
— memory buffer, FP adder, register file port

(resurssi-
konflikti)

Copyright Teemu Kerola 1999

Why couldn’t we execute this

Instruction right now?

» Name dependency (nimiriippuvuus)
— two instruction use the same data item
* register or in memory
no value passed from one instruction to another
Instructions have all their correct data available

each individual result is the one intended
overall result is not the one intended
— two cases. Output Dependency & Antidependency
(outputriippuvuus) (antiriippuvuus)

Copyright Teemu Kerola 1999

Output Dependency? ¢

e Some earlier instruction has not yet finished
writing from the same |location that we want

to writeto
- read ,rl, sum

* Need to preserve order add r2,r1,r3
add rl,r4,r5

Want to havesumof r4d andr5inrl

T
i
el

e
4 o
AL

58

- ‘.. e
34

Sares

g 1_:--1

24.11.1999 Copyright Teemu Kerola 1999

Antl dependency (1)

Some earlier instruction has not yet finished reading from
the same location that we want to write to
Need to preserve order

mv r2’,(r1
add rl,r4, r5

Want to have original value of rl1inr2

24.11.1999 Copyright Teemu Kerola 1999

Machine Parallelism ¢

 |nstruction-level paraleism
— How much parallelism is there
— Theoretical maximum

e Machine parallelism

— How much parallelism is achieved by any specific
machine or architecture?

— At most as much as instruction-level parallelism
 dependencies?
 physical resources?
 not optimized (stupid) design?

Fe 24111999 Copyright Teemu Kerola 1999

Superscalar Processor

|nstruction dispatch

Fig. 13.6

— get next available executable instruction from

INstruction stream
Window of execution

— dll Instructions that are considered to be 1ssued

| nstruction i1ssue

— alow Instruction to start execution

— execution and completion phase should continue

now with no stalls

|nstruction reorder and commit (retiring)
— hopefully all system state changes here!

— last chance to change order or abandon results

_HI 24.11.1999 Copyright Teemu Kerola 1999

Copyright Teemu Kerola 1999

e
O
©
@
o
-
=
&
=
D
=

— ready instructions from prefetch or branch
prediction buffer

— avallable slots in window of execution

 \Whenever there are both

24.11.1999

Ap P b B
--\.-r‘.h HFLES

~ita

T e

Window of Execution

o Bigger iIs better

— easer to find a good candidate that can be
Issued right now

— more work to figure out all dependencies

— too small value will limit machine parallelism
significantly
e E.g., 6" instruction could be issued,
but only 4 next ones are even considered

24.11.1999 Copyright Teemu Kerola 1999

| nstruction I ssue

» Select next instruction(s) for execution

e Check first everything so that execution can
proceed with no stalls (stopping) to the end
— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies

e
4 o
AL

58

o b
g} g SEEE-E e

Sares

g =.--1

24.11.1999 Copyright Teemu Kerola 1999

| nstruction Issue Policies

* |nstruction fetch policy

— constraints on how many instruction allowed to
be considered to be dispatched at atime

o 2 Instructions fetched and decoded at atime
P both must be dispatched before next 2 fetched

- * Instruction execution policy

i |

— constraints on which order dispatched
Instructions may start execution

. » Completion policy

' — constraints of which order completions can
occur

q”ls“ 24.11.1999 Copyright Teemu Kerola 1999
ik

Example Issue Policy

In-order issue with in-order completion
— same as purely seguential execution
— no Instruction window needed
Instruction issued only in original order
e many can be issued at the same time
Instructions completed only in original order
e many can be completed at the same time
check before issue:
* resource conflicts, data & control dependencies

e execution time, so that completions occur in order:
wait long enough that earlier instructions will
complete first

Fig. 13.4 (3)

_HI 24.11.1999 Copyright Teemu Kerola 1999

Example Issue Policy

 |n-order issue with out-of-order completion

— Issuein original order
e many can be issued at the same time
— no Instruction window needed

Fig. 13.4 (b)

— allow executions complete before those of earlier

InNstructions
— Check before issue:

* resource conflicts, data & control dependencies
 output dependencies. wait long enough to solve

Copyright Teemu Kerola 1999

Example Issue Policy

Out-of-order issue with out-of-order completion

— Issue in any order Fig. 13.4 (C)
e many can be issued at the same time

— Instruction window for dynamic instruction scheduling

— allow executions complete before those of earlier
Instructions

— Check before issue:
* resource conflicts, data & control dependencies
 output dependencies

e antidependencies. must wait for earlier instructions
Issued later to pick up arguments before overwriting
them

_HI 24.11.1999 Copyright Teemu Kerola 1999

Get Rid of Name Dependencies

 Problem: independent data stored in locations with
the same name

— often a storage conflict: same register used for two
different purposes

. — resultsin wait stages (pipeline stalls, “bubbles’)
-« Cure: register renaming
— actual registers may be different than named registers

— actual registers allocated dynamically to named
registers
— alocate them so that name dependencies are avoided

_HI 24.11.1999 Copyright Teemu Kerola 1999

Antidependency: |3 can not complete
before |2 has read value from R3:

Rename registers to hardware
registers R3a, R3b, R3c,
R4b, R5a, R7b

No name dependencies now:

R3:=R3 + R5;
<R¢:R3+1;
P 4
R3:=R5 + 1;
R7:=R3 + R4;

R3b:=R3a + R5a
R4b:=R3b + 1
R3c:=Rba+ 1
R7b:=R3c + R4b

- Drawback: need more registers

_ + Why R3a& R3b?

24.11.1999 Copyright Teemu Kerola 1999

' Superscalar |mplementation ¢

T
Edc
P
e
i.l.--

Fetch strategy Fig. 13.6
— prefetch, branch prediction

Dependency check logic

— forwarding circuits to transfer dependency data directly
Instead viaregisters or memory

Multiple functional units (pipelines)

Effective memory hierarchy to service many
memory accesses simultaneously

L ogic to issue multiple instruction simultaneously
L ogic to commit instruction in correct order

Copyright Teemu Kerola 1999

Overall Gain from Superscalar
|mplementation

e Seem the effect of ...
— renaming P
— window size P
— out-of-order issue b

— duplicated
e data cache access b
« ALU b
* both b
e Max speed-up about 4

24.11.1999 Copyright Teemu Kerola 1999

Fig. 13.5

right graph
color of vertical bar
“base’” machine

“+ld/st”
“ALU"
“both”

o)
o))
)
—
o
©
T
X
m
T
=
e
)
Q
@)

24.11.1999

-

ey
Ldaadas

-

Exampl e:
PowerPC 601 Architecture ¢

e General RISC organization
— Instruction formats |Fig. 10.9
— 3 execution units Fig. 13.10

| Logical view Fig. 13.11
~ — 4instruction window for issue

— each execution unit picks up next onefor it
whenever there is room for new Instruction

— Integer instructions issued only when 1st in
gueue

Copyright Teemu Kerola 1999

PowerPC 601 Pipelines o

* Instruction pipelines Fig. 13.12
— all state changesin final “Write Back” phase

— up to 3 instruction can be dispatched at the
same time, and issued right after that in each
pipeline if no dependencies exist

 dependencies solved by stalls

— AL U ops place their result in one of 8 condition

code field in condition register
 Up to 8 separate conditions active concurrently

f 24.11.1999 Copyright Teemu Kerola 1999
2

PowerPC 601 Branches ¢

e Zero cycle branches

— branch target addresses computed already in
lower dispatch buffers

 before dispatch or issue!

— Easy: unconditional branches (jumps) or branch

on already resolved condition code field

— otherwise

e conditional branch backward: guess taken
o conditional branch forward: guess not taken

o If speculation ends up wrong, cancel conditional
Instructions in pipeline before write-back

 gpeculate only on one branch at atime

4 24.11.1999 Copyright Teemu Kerola 1999
EEs

PowerPC 601 Example

e Conditional branch example
— Original C code Fig. 13.13 (a)

— Assembly code Fig. 13.13 (b)
e predict branch not taken

— Correct branch prediction [F19-13.14(3)
— Incorrect branch prediction [Fi9: 15.14(b)

24.11.1999 Copyright Teemu Kerola 1999

PowerPC 620 Architecture

e 6 execution units

Fig. 4.25

e Up to 4 instructions dispatched simultaneously
e Reservation stations to store dispatched

Instructions and their arguments
— kind of rename registers al so!

24.11.1999 Copyright Teemu Kerola 1999

[HePa96] Fig. 4.49

" PowerPC 620 Rename Registers

e Rename registersto store results not yet
committed [HePag96] Fig. 4.49
— normal uncompleted and speculative instructions
— 8int and 12 FP extrarename registers
 In same register file asnormal registers
results copied to normal registers at commit
Information on what to do at commit isin completion
unit in reorder buffers
 |nstruction completes (commits) from completion
unit reorder buffer once all previous instructions
are committed
— max 4 instructions can commit at atime

_HI 24.11.1999 Copyright Teemu Kerola 1999

PowerPC 620 Speculation

e Speculation on branches
— 256-entry branch target buffer
o two-way set-associative
— 2048-entry branch history table
 used when branch target buffer misses

— speculation on max 4 unresolved branches

24.11.1999 Copyright Teemu Kerola 1999

Branch correclion

Reorder butler inlormalion

Dipalch unil
wilh B-eniny
1 in=lruclion queus

Complelion
unii with
recrdar bulter

In=truclion
In=trudlion dispaich
cacha buze=

Regider nos.

In=ruclion
opealion
GF opeand buses buzes

FF operand busex

X510 =1 |
]GP resull biees FF resull buses
¥

r

Re=ull ==lus buzes

FIGURE 4.49 The PowarPC 620 has six diffarent functlonal units, aach with ks own rasarvatlon statlons and a 16
antry reomder buffer, contalned In the Instruction completion unkt.

(Hennessy-Patterson, Computer Architecture, 2nd Ed, 1996)

24.11.1999 Copyright Teemu Kerola 1999

