10N

Usage
ICS

story
ster Files

SomeH
| nstruction

Register Allocat
Optimization

RISC vs. CISC

Copyright Teemu Kerola 1999

tecture
Character

Large Reg

o\
—
e
O

e
o
<
7
ad

oy
_] ey
L

18.11.1999

Original ldeas Behind CISC
' (Complex Instruction Set Comp.)

 Make It easy target for compiler

— small semantic gap between HLL source code
and machine language representation

— good at the time when compiler technology big
problem

— make it easier to design new, more complex
languages
.+ Dothingsin HW, not in SW
. — addressing mode for 2D array reference?

:I 18.11.1999 Copyright Teemu Kerola 1999

0
-
®
=
O
®
—
12
3
O
O

 The simple case is usually the most

Imize

easiest to opt

frequent and the

hardware and be

sure the rest can be handled correctly In

INgs N

simple, fast th

e DO

Ap P b B
--\.-r‘.h HFLES

~ita

T e

18.11.1999

RISC Approach ¢

* Optimize for execution speed instead of
ease of compilation

— compilers are good, let them do the hard work

— do most important things very well in HW
(machine instruction), rest in SW (subroutines)

e What are most important things?

— Those that consume most of the time
(In current systems)

_H 18.11.1999 Copyright Teemu Kerola 1999

Amdahl’s Law ©)

Speedup due to an enhancement is proportional to the
fraction of the time that the enhancement can be used

» Foating point instructions improved to
run 2X; but only 10% of actual

Instructions are FP? / No speedup

ExTime,,, = EXTime,4x (0.9*1.0+ .1*0.5)
= 0.95 x ExTime,4

0.95

= 1.053
<<2 I

Speedupoverall = _
ExTime

new

q'flf“ 18.11.1999 Copyright Teemu Kerola 1999
A

Where is Time Spent?

Dynamic behaviour
— execution time behaviour Table 12.2

Which operations are most common?

Which types of operands are most
common?

Table 12.3

Which addressing modes are most
common?

Which cases are most common? | Table 12.4
— E.g., number of subroutine parameters?

:I 18.11.1999 Copyright Teemu Kerola 1999

|deas Behind RISC (3)

o Very large set of registers
— bigger than can be addressed in machine instruction?
— compilers can do good register allocation
 Very smple and small instruction set is faster
— easy to optimize instruction pipeline
~ » Economics
"~ _ Simpleto implement
P quickly to market

P beat competition
P recover development costs

18.11.1999 Copyright Teemu Kerola 1999

CISC Architecture ¢

L arge and complex instruction sets

— direct implementation of HLL statements

e Case statement?

e array or record reference?
May be targeted to specific high level
language
— may not be so good for others
Many addressing modes

Vax11/780

\Y/ any data char string, float, int, leading separate string,
t numeric string, packed decimal string, string,
ypeS trailling numeric string, variable length bit field

0 18.11.1999 Copyright Teemu Kerola 1999 25

L arge Register File

e Overlapping register windows [Fig- 12.1
— fixed max nr (67) of subroutine parameters
— fixed max nr of local variables

— function return values are directly accessible to
calling routine in temporary registers
* NO copying needed

18.11.1999 Copyright Teemu Kerola 1999

Problems with
L arge Register Files

o What If run out of register sets?

Fig. 12.2

— save & restore values from memory

— hopefully not very common
o call stacks are usually not very deep!

o find out from studies what is enough usually

e Global variables

— store them always in memory?
— use another, separate register file?

_H 18.11.1999 Copyright Teemu Kerola 1999

Register Files vs. Cache

 Would it be better to use the same
real estate (chip area) as cache?
— register files have better locality
— caches are there anyway

— caches solve global variable problem
naturally
e no compiler help needed

— accessing register filesis faster

18.11.1999 Copyright Teemu Kerola 1999

Table 12.5

Register Allocation

e Goal: Prob(operand in register) = high
e Symbolic register: any guantity that could
be In register

| « Allocate symbolic regsto real regs
- —if some symbolic regs are not used in sametime
Intervals, then they can be assigned to the same
real regs
— use graph coloring problem to solve reg
allocation problem

:I 18.11.1999 Copyright Teemu Kerola 1999

Graph Coloring Problem

e Glven agraph with connected nodes, assign
n colors so that no neighboring node has the
same color

— topology
— NP complete problem
« Application to register allocation
— node = symbolic register Fig. 12.4
— connecting line = simultaneous usage
— n colors = nregisters

Fe 18111999 Copyright Teemu Kerola 1999

How Many Registers Needed?

e Usually 32 enough
— more P longer register address in instruction
— more P noreal gain in performance

e | essthan 167

— Register allocation becomes difficult

— not enough registers
P store more symbolic registers in memory
P slower execution

18.11.1999 Copyright Teemu Kerola 1999

RISC Architecture

Complete one instruction per cycle
— read reg operands, do AL U, store reg result
— all simple instructions

Register to register operations
— |oad-store architecture

Simple addressing modes
— easy to compute effective address

Simple instruction formats
— easy to load and parse instructions
— fixed length

q'flf“ 18.11.1999 Copyright Teemu Kerola 1999
A

RISC vs. CISC (8)

Fixed instruction length (32 bits)
Very few addressing modes

No indirect addressing

L oad-store architecture

— only load/store instructions access memory
At most one operand in memory

Aligned data
At least 32 addressable registers Table12.8
At least 16 FP registers

18.11.1999 Copyright Teemu Kerola 1999

RISC & CISC United? «

Pentium |1, CISC architecture

Each complex CISC instruction translated
during execution (in CPU) into multiple
fixed length ssimple micro-operations

Lower level implementation is RISC,

working with RISC micro-ops

Could CPU arealtime be better spent
without this translation?

— Who wants to try? Transmeta Corporation?
— Why? Why not?

Copyright Teemu Kerola 1999

History and RISC --

Copyright Teemu Kerola 1999

AN
—
I
¥
O
©
e
c
LL

18.11.1999

T [T L= ff - ea
i amne

