15.11.1999

Computer Organization |1
- eneral CPU Organization
CPU Structure and Function GALU 9 @
* Fig. 11.1
Ch1l — does all real work [Fig 11.1]
* Registers
Genera Organisation — data stored here
Registers * Internal CPU Bus
Instruction Cycle « Control [Moreiin Chapters 14-15 |
Pipelining — determines who does what when
Branch Prediction — driven by clock
Interrupts — uses control signals (wires) to control what

15.11.1999 Copyright Teemu Kerola 1999 1

every circuit isdoing at any given clock cycle

15.11.1999 Copyright Teemu Kerola 1999 2

Register Organisation
* Registers make up CPU work space

— User visibleregisters ADD R1,R2R3
« accessible directly viainstructions

— Control and status registers
« may be accessibleindirectly viainstructions
» may be accessible only internally
* Internal latches for temporary storage
during instruction execution
— E.g., ALU operand either from constant in
instruction or from machine register

15.11.1999 Copyright Teemu Kerola 1099 3

User Visible Registers

« Variesfrom one architecture to another
* General purpose
— Data, address, index, PC, condition, ...
* Data
— Int, FP, Double, Index
* Address
¢ Segment and stack pointers
— only privileged instruction can write?
« Condition codes
— result of some previous ALU operation

15.11.1999 Copyright Teemu Kerola 1999 4

Control and Status Registers
« PC
— next instruction (not current!)
— part of process state -
* IR, Instruction (Decoding) Register
— current instruction
* MAR, Memory Address Register
— current memory address
* MBR, Memory Buffer Register
— current data to/from memory
¢ PSW, Program Status Word
— what is allowed? What is going on?
— part of process state

15.11.1999 Copyright Teemu Kerola 1099 5

PSW - Program Status Word ¢

* Sign, zero?

* Carry (for multiword ALU ops)?

» Overflow?

* Interrupts that are enabled/disabled?

* Pending interrupts?

* Cpu execution mode (supervisor, user)?
* Stack pointer, page table pointer?

* 1/Oregisters?

15.11.1999 Copyright Teemu Kerola 1099 6

Chapter 11, CPU Structure and Function

Computer Organization |1

15.11.1999

Instruction Cycle

* Basic cyclewith interrupt handling

« Indirect cycle
e DataFlow
— Cpu. Bus, Mamory
» Data Path
Fig14.5
—inside CPU

15.11.1999

Copyright Teemu Kerola 1999

Pipeline Example

 Laundry Example (David A. Patterson)

» Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

— |
’

* Washer takes 30 minutes | |
« Dryer takes 40 minutes E

« “Folder” takes 20 minutes %‘F

15.11.1999 8

6PM 7 8 9 10
|

Sequential Laundry ¢

11

Mid-
night

I Time
| — —

\

~un oo

~oa=0

Sequentlal laundry takes 6 hours for 4 loads

15.11.1999

30 40 20 30 40 20'30 40 2030 40 20

Time for one load

vnve

Latenc
15 hours per load

0.67 Ioads per hour
Throughput

« If they learned pipelining, how long would laundry take?

9

Pipelined Laundry ¢

10

Time for one load
Latency

% 90 minutes per load

Ioads per hour

~n o o

Throughput

~-oa-=0

* Pipelined laundry takes 3.5 hours for 4 loads

15.11.1999 10

Pipelining Lessons «

* Pipelining doesn’t help 6PM 7
latency
of singletask, it helps
throughput of entire
workload

 Pipelinerate limited by
slowest pipeline stage

« Multiple tasks operating

8

9

Time
|
30 40 40 40 40 20

simultaneously

« Potential speedup
= Number pipe stages

(nopeutus)

15.11.1999

Pipelining Lessons ¢

« Unbalanced lengths of pipe] e6Pm 7 8 9
stages reduces speedup Time

30 40 40 40 40 20

* May need more resources
—Enough electrical current
to run both washer and
dryer simultaneously?

—Need to have at least
2 people present all
the time?

. 'I_'imeto “fiII_" pipelineand fill e
timeto “drain” it reduces drain
speedup

15.11.1999 12

Chapter 11, CPU Structure and Function

Computer Organization |1

15.11.1999

2-stage Instruction Execution
Pipeline

» Good: instruction pre-fetch at the sametime
as execution of previousinstruction

» Bad: execution timeislonger, |.e., fetch
stage is sometimesidle

 Bad: Sometimes (jump, branch) wrong
instruction is fetched
— every 6 instruction?

» Not enough paralelism b more stages?

15.11.1999 Copyright Teemu Kerola 1099 13

Another Possible
Instruction Execution Pipeline

» FE - Fetchinstruction

* DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

* El - Execute Instruction

WO - Write operand (result) to memory

15.11.1999 Copyright Teemu Kerola 1999 14

Pipeline Speedup «

*
‘ No pipeline, 9 instructions ‘L»

. . Fig. 11.11 . .
‘ 6 stage pipeline, 9 instructions ‘ 14 time units

Speedup = —old_
Time,

=54/14=3.86 <6!
ew (nopeutus)
» Not every instruction uses every stage

— seria execution actually even faster

— speedup even smaller

— will not affect pipeline speed

— unused stage P CPU idle (execution “bubble”)

15.11.1999 Copyright Teemu Kerola 1099 15

Pipeline Execution Time

« Time to execute one instruction (latency, seconds)
may be longer than for non-pipelined machine
— extralatches to store intermediate results

« Time to execute 1000 instructions (seconds) is
shorter than that for non-pipelined machine,
l.e,
Throughput (instructions per second) for pipelined
machine is better (bigger) than that for non-
pipelined machine

« |Isthisgood or bad? Why?

15.11.1999 Copyright Teemu Kerola 1999 16

Pipeline Speedup Problems

» Some stages are shorter than the others
* Dependencies between instructions

— Control dependency
« E.g., conditional branch decision know only after El

stage

15.11.1999 Copyright Teemu Kerola 1999 17

Pipeline Speedup Problems
- Known
. Dependenc| es between after EI

. . stage
Instructions &
_ datadependency MUL R1,R2,R3
 E.g., oneinstruction LOAD R6,AITB(R1)
depends on some earlier Needed .
instruction inco stage WO
— structural dependen =
P & STORE RLVarX *

 E.g., many instructions
need the same resource MUL R3RAR5 Y.
a the sametime ., -

FO
Fl
—e.g., memory bus
15.11.1999 Copyright Teemu Kerola 1999 18

ADD R2R3VayY

Chapter 11, CPU Structure and Function

Computer Organization |1

15.11.1999

CyCI@Time overhead?
t =maxft,]+d =t +d >>d

Tmax gate delay in stage
(min) cycletime

delay in latches between stages
(= clock pulse, or clock cycletime)
gate delay in stage i

* Cycletimeisthe samefor al stages

—time (in clock pulses) to execute the cycle
* Each stage executed in one cycle time
* Longest stage determines cycletime

15.11.1999 Copyright Teemu Kerola 1999 19

Pipeline Speedup
ninstructions, k stages

ninstructions, k stages / t = stage delay = cycletime

Time T = nkt (pessimistic because of
not pipelined: 1 7 n assuming, that each stage
would still havet cycletime)

bpares T =[k+(n- D

pipelined:
k cycles until 1cyclefor
Istinstruction each of therest
completes (n-1) instructions

15.11.1999 Copyright Teemu Kerola 1999 20

Pipeline Speedup o
ninstructions, k stages
ninstructions, k stages / t = stage delay = cycletime
Time T =nkt (pessimistic because of
not pipelined: 1 T n assuming, that each stage
would still havet cycletime)

;ip”;lemed: T, =[k+(n- D}

Speedups(zl= nkt _ nk
Vanges T [k+(n-DF ~[k+(n- D]

15.11.1999 Copyright Teemu Kerola 1999 21

Branch Problem Solutions

» Delayed Branch

— compiler places some useful instructions
(2 or more!) after branch (or jump) instructions

— these instructions are almost completely
executed when branch decision is known

— less actua work lost

— can be difficult to do

— conditional branches tricky, must be able to
stop changes (by instruction in delay slot) in
case thereis no branch

15.11.1999 Copyright Teemu Kerola 1999 2

Branch Problem Solutions (contd)
* Multiple instruction streams

— execute speculatively in both directions

 Problem: we do not know the branch target
address early!

— if onedirection splits, continue each way

— lots of hardware
« speculative results, control

— speculative instructions may delay real work
* bus & register contention?

— need to be able to cancel not-taken instruction
streams in pipeline

15.11.1999 Copyright Teemu Kerola 1099 23

Branch Problem Solutions (contd)
« Prefetch Branch Target

— prefetch just branch target instruction

— do not executeiit, |.e., do only Fl stage

— if branch take, no need to wait for memory
* Loop Buffer

— keep n most recently fetched instructionsin
high speed buffer inside CPU

—works for small loops (at most n instructions)

15.11.1999 Copyright Teemu Kerola 1999 24

Chapter 11, CPU Structure and Function

Computer Organization |1

15.11.1999

Branch Problem Solutions (contd)
 Branch Prediction

— guess (intelligently) which way branch will go
— fixed prediction: takeit, do not take it
— based on opcode
« E.g., BLE instruction usually at the end of loop?
— taken/not taken prediction
« based on previous time this instruction was executed
« need space (1 bit) in CPU for each (?) branch
« end of loop always wrong twice!
» Extension based on two previous times

Branch Address Prediction

* Itisnot enough to know whether branch is
taken or not

Must know also branch address to fetch
target instruction
* Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address

15.11.

— entries only for most recent branches
 Branch instruction address, or tag bits for it
« Branch taken prediction bits (2?)

 Target address (from previous time) or complete
target instruction?

» Why cached

— expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction

1999 Copyright Teemu Kerola 1999

—need more space (2 bits) — stored in CPU for each (?) branch
Branch History Table . u;\ﬁgblgéaﬂgg PowerPC
. Cached g

— 32 general purpose regs, each 64 bits

« Exception reg (XER), 32 bits

— 32 FPregs, each 64 bits

- FPstatus & control (FPSCR), 32 bits

— branch processing unit registers

« Condition, 32 bits Fig. 11.23b
— 8fields, each 4 bits
' Table11.4
— identity givenin instructions

« Link reg, 64 bits
— E.g., return address
« Count regs, 64 bits

— E.g., loop counter

15.11.1999 Copyright Teemu Kerola 1099

15.11.1999

CPU Example: PowerPC
* Interrupts
— cause

« system condition or event
« instruction

Copyright Teemu Kerola 1999

CPU Example: PowerPC

» Machine State Register, 64 bits
— bit 48: external (1/O) interrupts enabled?
— bit 49: privileged state or not
— bits 52&55: which FP interrupts enabled?
— bit 59: data address translation on/off
— bit 63: big/little endian mode
» Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

15.11.1999 Copyright Teemu Kerola 1099

Chapter 11, CPU Structure and Function

Computer Organization |1

15.11.1999

Power PC Interrupt Invocation
Save return PC to SRRO

— current or next instruction at the time of interrupt
Copy relevant areas of MSR to SRR1

Copy additional interrupt info to SRR1
Copy fixed new vaue into MSR

— different for each interrupt

— address trandlation off, disable interrupts
Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

15.11.1999 Copyright Teemu Kerola 1999 31

Power PC Interrupt Return

* Return From Interrupt (rfi) instruction
— privileged

* Rebuild origind MSR from SRR1

* Copy return address from SRRO to PC

15.11.1999

Copyright Teemu Kerola 1999

-- End of Chapter 11: CPU Structure -- ‘
b ;T:H 5 stage pipelined version of datapath ‘ ‘ (Fig. 6.12) ‘
g

i % (Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

15.11.1999 Copyright Teemu Kerola 1099 3

Chapter 11, CPU Structure and Function

