PIANOS requirements specifications

Group Linja

Helsinki 7th September 2005
Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Joonas Kukkonen
Marja Hassinen
Eemil Lagerspetz

Client
Marko Salmenkivi

Project Masters
Juha Taina
Vesa Vainio (Instructor)

Homepage
http://www.cs.helsinki.fi/group/linja

Contents

1 Preface
1.1 Overview
1.2 Version history . . .

2 Introduction

2.1 The problem domain

2.2 Previous Systems e e e

2.3 The problem domain indiagrams
3 Glossary

3.1 Probabilisticinference L.

3.2 Models and related concepts L.

3.3 Metropolis-Hastings algorithm

4 Use cases

4.1 Theformatofusecases
4.2 Definingamodel o .
42.1 Creatinganewmodel
4.2.2 Modifying an existingmodel,
4.3 Defining simulation parameters
4.4 Running the simulation,

5 Requirements

5.1 Modelrequirements
5.2 Datarequirementso e e
5.3 Simulation requirements L. L

5.4 Output requirements

5.5 General error conditionso e e e e e e

5.6 Non-functional requirements

5.7 General requirements
6 System architecture

7 System evolution

10
11
17
18
25
29
31
32

34

35

8 References

11

36

1 Preface

This is a software requirements specification (SRS) document of the PIANOS project.
The purpose of an SRS is to list and prioritize all requirements set for the software being
produced, and so work as an agreement between the project personnel and the customer.
This document provides a basis for future enhancements and it also reduces development
effort.

1.1 Overview

1. Preface Describes this document’s purpose.

2. Introduction Describes the problem domain.

3. Glossary Explains the glossary used in this document.

4. Use cases Describes the use cases of the program.

5. Requirements Describes the requirements set for the program.

6. System architecture This section contains a simple model of the software and its
inputs and outputs.

7. System evolution Describes which requirements are likely to change in the
future.

1.2 Version history

Version Date Modifications
1.0 01.06.2005 The initial version
1.1 14.06.2005 The draft to be inspected

1.2 21.06.2005 The final version

2 Introduction

The project’s goal is to produce a program for the University of Helsinki’s spatial data
analysis research group. The program analyzes spatial data by using a prior distribution
and a mathematical model to calculate the posterior distribution for a set of variables.
The posterior distribution could for example be a bird species’ distribution in Finland.
The program will not analyze how accurate the given model is, it will only calculate
the posterior distribution. Model comparison will be done with other software using the
posterior distributions as data.

2.1 The problem domain

The main topic of interest is the question about the most accurate model to describe a
given real life phenomenon. The only way to compare the models is to compare the
results. Defining a general modeling language is hard, implementing a program to process
data using a general model is even harder. The PIANOS project will concentrate on
producing a program for processing two given datasets. This cuts back the amount of
needed features in the modeling language.

The simulation needs a large number of iterations before the results start to converge on
certain points. Due to the number of iterations and large data, the calculation might take
a long time to finish. This requires the program and the implementation language to be
efficient.

2.2 Previous systems

The software is related to another currently in use, named Bassist: ‘Bassist is a tool that
automates the use of hierarchical Bayesian models in complex analysis tasks. Such mod-
els offer a powerful framework for modeling statistically complex real-world phenomena.’
[Bass]

Currently the research group is using BASSIST to analyze spatial problems. BASSIST
was not designed for problems with spatial dependencies. Its modeling language lacks
features which would allow efficient definition of spatial problems. The goal is to con-
centrate on a small subset of spatial problems which cannot be solved efficiently with
BASSIST.

2.3 The problem domain in diagrams

This section aims to provide a high abstraction level map of the problem domain. It is a
set of ER-diagram-style maps of the domain as the project members see it.

*

Variable/Parameter

Distribution
Range of values

Model

Connected
2”#

==

Grouped
Global

*

Data

Figure 1: The model and surrounding terms

/

Grouped

Value from data

Prior distribution

Expression

Dependence

T

Functional

Stochastic

1

Spatial

Variable

Value defined by

Value defined by

Dependence

AN

Functional Stochastic
Expressed by Spatia'l.

Figure 2: The variables

Global

Value defined in the model

Expressed by

Static distribution

Expressed by

Distribution

Simulation parameters

Burn-in

Thinning

Iterations for each variable

Proposal distribution @

Update strategy

Q@

Proposal strategy

Blocking

Sequential

Random

Weighted update

Defined in a separate file

Variable

Default Defined Strategy Initial values

=

Random walk

Fixed proposal distribution

Figure 3: The simulation parameters

3 Glossary

3.1 Probabilistic inference

Algorithm used

1

Gibbs sampling

Metropolis-Hastings

Random variable (synonym: stochastic variable): Function which combines events
with their probabilities. A numeric variable related to a random phenomenon (for example
throwing a dice). The value of the variable is determined if the result of the phenomenon

is known, otherwise only the probabilities of different values are known. [Tode04]

Discrete random variable: Random variable with a discrete range.

Point probability function: (Synonym: frequency function) Function f : R — R related
to discrete random variable X so that Vx € R : f(z) = P{X = x} = the probability that

the value of X is x. [Tode04]

Density function: f(z) is a density function iff

1. f>0

2. fisintegrablein R and [*_ f(z)dzx = 1.

[Tode04]

Cumulative distribution function: The function F' : R — R is the cumulative distribu-
tion function associated with random variable X iff '(z) = P{X < x} = the probability

that X is less than or equal to z. [Tode04]

Continuous distribution: A random variable has a continuous distribution as its density
function f if Va,b € R: P{a < X < b} = [f(z)dz [Tode04]

Joint distribution: If X and Y are random variables, their joint distribution describes
how probable all the possible combinations of X and Y are.

Independence: Events A and B are independent, if the probability of B is independent
on whether A has happened or not. (For example if A = “it rains”, B = “when I throw
a dice the result is 6” and C="when I throw a dice the result is even” then A and B are
independent but B and C are not.) [Tode04]

Conditional probability: If X and Y are random variables, the conditional probability
P{X = z|Y = y} means the probability that the value of X is x if it is assumed that the

value of Y is y.
Bayes’s rule: P{X = z|Y =y} = £ {Y:yllif{;x:};; {X=2} " The rule is obtained from the
observation that P{Y = y|X =z} - P{X =2} = P{X =2 ANDY =y}

Chaining: Using the Bayes’s rule many times consecutively.

Bayesian model: A model which connects dependent random variables to each other by
defining dependencies and conditional probabilities. The model defines the joint distribu-
tion of the variables.

Likelihood function: P{data|explanation} is called the likelihood function because it
defines how likely it is to get such a data if the real conditions are known. (For example if
we know that a bird resides at some area, then how likely it is to get the observations we
have already got.)

Markov random field: A random field that exhibits the Markovian property:
(X = x| X; = z;,1 # j) = 7(X; = x;]6;), Where 6, is the set of neighbours for X.
That is, only the adjacent units affect the conditional probability. [Rand]

Discrete distributions:

Uniform distribution

Binomial distribution

Geometric distribution

Poisson distribution

Continuous distributions:

e Uniform distribution
e Normal distribution
e Multinomial distribution

e Exponential distribution

Binormal distribution

Lognormal distribution

Beta distribution

Gamma distribution

Dirichlet distribution

Descriptions of these distributions can be found in [Math05].

Functional dependence: A condition between two variables X and Y so that the value of
X determines the value of Y unambiguously.

Stochastic dependence: A condition between two variables X and Y so that the value of
X doesn’t determine the value of Y but influences the probabilities of the possible values.

Spatial dependence: A special case of stochastic dependence where the dependence is
related to some spatial structure. (For example towns that are adjacent to each other
influence to each other.) The spatially dependent variables form a Markov random field.

Prior distribution: The prior distribution of the parameters describes their assumed joint
probability distribution before inferences based on the data are made.

Posterior distribution: The posterior distribution of the parameters describes their joint
probability distribution after inferences based on the data are made.

Marginal distribution: The prior or posterior distribution concerning only one parame-
ter.

3.2 Models and related concepts

Model: Means: Bayesian model

Variable: A variable is an entity in the model that can have an assigned value from its
range of values. Variables and their dependencies form the base of the problem that the
software is developed to solve.

Parameter: A parameter is a variable whose value is not defined by data.

Adjacency matrix: The adjacency matrix of a simple graph is a matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position ij according to whether i and
j are adjacent or not.

Floating point number: A computer representation of a real number with finite precision.

3.3 Metropolis-Hastings algorithm

Iteration: A single round of the algorithm when all the parameters have been updated
once.

Burn-in-iterations: The iterations that are run before any output is produced.

Thinning factor: The thinning factor t means that every ' iteration value is used in the
output and the rest are discarded.

Block: A set of parameters which are defined to be updated together. That is, the propos-
als are generated to all of them and the acceptance of all the proposals is decided at the
same time.

Update: Proposing a value to a parameter and then accepting it (the value changes) or
discarding it (the value remains the same).

Proposal strategy: The proposal strategy defines how the next proposed value is gener-
ated. Possible choises are

1. Fixed proposal strategy: The next proposed values for a parameter is taken from its
proposal distribution.

2. Random walk: The next proposed value for a parameter is created by adding a value
taken from the proposal distribution to the current value of the parameter.

Proposal distribution:

1. The distribution from which the next proposed value for a parameter is chosen
(when using the “Fixed proposal distribution” proposal strategy).

2. The distribution that is used in generating proposed values for a parameter by
adding a value taken from the distribution to the parameter’s current value (when
using the “Random walk™ proposal strategy).

Update strategy: The update strategy describes which variables belong to the same
block. (See: Block) The update strategy also includes information about whether the
blocks are considered for updates in sequential order, whether the next block to update is
chosen at random or whether the block to update is chosen based on the block weights.

Convergence: The phenomenon that during the simulation the parameter values get
closer to the posterior distribution. The speed of the convergence depends on the initial
values and other simulation parameters.

4 Use cases

4.1 The format of use cases

Each use case begins with an introductory description. After this there are Starting con-
ditions, Ending conditions and Error conditions listed. Some of these cases are divided
into subcases. The subcases contain the information that differs from the definition of the
supercase.

4.2 Defining a model

The user defines a model that contains necessary information for calculating statistical
probabilities, with or without the spatial dimension. The specifics of what the model may
contain are described in requirements M2-M7 and M10-M11.

The model is stored in a text file, using a model definition language which will be defined
in the design phase.

4.2.1 Creating a new model

Starting conditions: None

Ending conditions: A new valid model has been created.

Error conditions: If the model is invalid, there will be consequences in the
simulation. This use case does not check for the validity.

4.2.2 Modifying an existing model

Starting conditions: A valid existing model is present

Ending conditions: A different valid model has been created.

Error conditions: If the model is invalid, there will be consequences in the
simulation. This use case does not check for the validity.

4.3 Defining simulation parameters

The user defines some of the simulation parameters defined in requirements S1-S12.
Some of these, except the initial values, have defaults that are used in case that their
corresponding parameter values are not set.

Starting conditions: A valid model has been chosen for simulation.

Ending conditions: The simulation parameters are set. The simulation can be
run with these parameters.

Error conditions: If parameters set incorrectly, problems may arise during the
simulation.

4.4 Running the simulation

The user has specified a model to the program, the parameters for the simulation and a file
for output. The program starts the simulation with these parameters. The program reports
on the progress of the run on-screen, while the actual values of the simulated parameters
are directed to the files specified.

Starting conditions: A model with either default simulation parameters or set
simulation parameters is present. Files to direct the output
to have been given.

Ending conditions: The simulation is run. Output is produced to the given files.

Error conditions: Invalid model or simulation parameters can cause inconsis-
tent results or error messages. If the program is not able to
read or write to a file, it will prompt the user for another file.

5 Requirements

The requirements are classified in five groups:

e Requirements related to the statistical model. (5.1)

e Requirements related to data files. (5.2)

e Requirements related to the simulation algorithm and its parameters. (5.3)
e Requirements related to output the program must produce. (5.4)

e Requirements related to error conditions. (5.5)

e Non-functional requirements (5.6)

Each requirement has an id, name, a longer description, rationale, priority, stability and
source.

The id:s are used when referring to the requirements from other documents (for example
from the system design document). The name of the requirement states shortly what
the requirement is about. The description is a longer explanation of the requirement and
the rationale includes reasons why the requirement is important. The source tells who
suggested including the requirement.

The requirements are divided into the following categories by priority:

e Essential: Implies that the software will not be acceptable unless these requirements
are provided in an agreed manner.

e Conditional: Implies that these are requirements that would enhance the software
product, but would not make it unacceptable if they are absent.

e Optional: Implies a class of functions that may or may not be worthwhile. This
gives the supplier the opportunity to propose something that exceeds the SRS.

[IEEE98]
The requirements are divided into the following categories by stability:
e Stable: The requirement is unlikely to change.

e Unstable: The requirement may change in the future. The software architecture
could be designed to be flexible enough to adapt to the possible changes.

5.1 Model requirements

These are the requirements related to the statistical models. This section contains the
requirements that define the expressive power of the model definition language.

Id: M1

Name: Using models

Description: The program must run simulations on models which are
described with the model description language (specified
later).

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: M2

Name: Defining variables whose values are taken from data

Description: The model description language must be able to express
variables whose values are taken from the data and spec-
ify where the values are found (the file name of the data file
and the location in the data file). It must also be possible to
define a distribution for such a variable (M12).

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

11

1d:

M3

Name: Defining parameters whose values are not taken from data

Description: The model description language must be able to express that
there are parameters whose values are not taken from the
data. If the parameter is stochastic, it must also be possible
to define a distribution for such a variable (M12). If the
parameter is deterministic, it must be possible to define an
equation that determines the value of the parameter.

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: M4

Name: Defining dependencies

Description: The model description language must be able to express de-
pendencies between two entities, each either a variable or a
parameter. The dependencies can be functional or stochas-
tic (special case: spatial dependencies (M7)).

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: M5

Name: Equations

Description: The model description language must be able to express
functional dependencies as equations. The left side of the
expression is a single parameter but the right side must be
able to include basic arithmetic operations (+, -, *, /), loga-
rithm, sum, product and power expressions.

Rationale: Equations are a natural way to express functional dependen-
cies.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: M6

Name: Defining variable/parameter repetition structures

Description: The model description language must be able to express a
structure of variables/parameters which are related to the
same entity. This entity structure must then be automati-
cally repeated for a specified number of times, for example
to span the length of a data file.

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

1d:

M7

Name: Defining spatial relations

Description: The model description language must be able to express the
meaning “all adjacent units” in mathematical expressions
used in dependencies (M4). An adjacency matrix defines
the entities that are neighbours to each other and form a net-
work of spatial relationships. It must be possible to specify
the file name of the adjacency matrix.

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: M9

Name: Reading models from text files

Description: The program must be able to read a model (described with
the specific description language) from a text file.

Rationale: It’s reasonable to store the models into text files because
they can then be easily edited without any special tools.

Priority: Essential

Stability: Stable

Source:

Marko Salmenkivi

1d:
Name:

Description:

Rationale:
Priority:
Stability:

Source:

M10
The distributions used

The model must be able to express at least the following
distributions:
Discrete distributions:

e Uniform distribution

e Binomial distribution

e Geometric distribution

e Poisson distribution
Continuous distributions:

e Uniform distribution

e Normal distribution

e Multinomial distribution

e Exponential distribution

e Binormal distribution

e Lognormal distribution

e Gamma distribution

e Beta distribution

e Dirichlet distribution

These distributions are frequently used in statistical models.
Essential
Unstable

Marko Salmenkivi

1d:

M1l

Name: Distributions defined by the user

Description: The program should be able to use a distribution defined by
the user. The distributions are defined as Fortran modules
which include all the subroutines which are needed in the
calculation.

Rationale:

Priority: Conditional

Stability: Stable

Source: Marko Salmenkivi

Id: Mi2

Name: Defining distributions

Description: The model description language must be able to express dis-
tributions given in M10. It must be possible to use these for
parameters and data variables.

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

5.2 Data requirements

Id: D1

Name: The general data format

Description: The program must be able to read data from files, where
data is stored like a matrix, that is, the lines contain integer
and floating point numbers'separated by spaces and the file
may contain several lines. The lengths of the lines must then
be equal. This format must include characters denoting that
the corresponding data is missing.

Rationale: A considerable amount of the data can be expressed in the
matrix format.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: D2

Name: Data not available

Description: If some variable instances (for example the observation
grade for each square) are not defined in the data, the vari-
ables not in the data must be treated like parameters. They
are used in the simulation like any other unknown parame-
ters (proposals of their values are made etc).

Rationale: It is possible that all information for each entity (square,
bird species etc) isn’t provided in the data.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

IThe syntax for floating point numbers is defined in [Fort01]

1/

1d: D3
Name: Invalid data

Description: If the data is invalid (for example doesn’t correspond to the
specified format) the program must print an error message.

Rationale:
Priority: Essential
Stability: Stable

Source: Anni Kotilainen

5.3 Simulation requirements

This section lists requirements related to the calculation of the program and the simulation
parameters.

Id: S1
Name: The algorithm used

Description: The program must be able to run simulations using the
Metropolis-Hastings algorithm.

Rationale:
Priority: Essential
Stability: Stable

Source: Marko Salmenkivi

1d:

S2

Name: Choice of algorithm

Description: The user could be able to choose to use the Gibbs sampling
algorithm for desired blocks instead of the Metropolis-
Hastings.

Rationale:

Priority: Conditional

Stability: Unstable

Source: Marko Salmenkivi

Id: S3

Name: Setting the number of updates

Description: The user must be able to define the number of the up-
dates for each block. That is, the simulation ends when
every parameter has been updated at least that many times.
(Note that update doesn’t necessarily mean that the value
changes.) It must also be possible to define a default num-
ber of updates which is used for each block if no other value
is given.

Rationale: The user wants to regulate how long the simulation will
take.

Priority: Essential

Stability: Unstable

Source:

Marko Salmenkivi

Id: S4

Name: Setting the number of burn-in iterations

Description: The user must be able to set the number of burn-in itera-
tions: That is, the number of iterations that are run before
any output is produced.

Rationale: It takes a while until the iteration values actually conform
to the posterior distribution.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: S5

Name: Setting the thinning factor

Description: The user must be able to set the thinning factor. The thin-
ning factor t means that every t*" iteration value is used in
the output and the rest are discarded.

Rationale: Even if the proposals aren’t accepted and the iteration val-
ues remain the same for many iterations the thinning fac-
tor ensures that the output contains more variance and de-
scribes the posteriori distribution better.

Priority: Essential

Stability: Stable

Source:

Marko Salmenkivi

Id: S6

Name: Setting the blocks

Description: The user must be able to define which variables belong to
the same block; that is, the likelihood of their values is con-
sidered as a whole for an update, rather than considering
each variable separately. The blocks must be read from a
text file.

Rationale: The user might want to regulate which parameters are up-
dated at the same time.

Priority: Conditional

Stability: Stable

Source: Marko Salmenkivi

Id: S7

Name: Setting the update strategy

Description: The user must be able to set the update strategy. The update
strategy defines whether the parameters / blocks are con-
sidered for updates in sequential order or whether the next
parameter / block to update is chosen at random. If random
update is chosen, block weights are used to choose a block
to be updated (see S8).

Rationale:

Priority: Conditional

Stability: Stable

Source:

Marko Salmenkivi

z1

1d:

S8

Name: Setting the weight of the blocks

Description: It could be possible to define the importance of the blocks.
In the update phase the next parameter / block to update
could be chosen according to the importance values.

Rationale: Some parameters might be more important to update than
the others.

Priority: Optional

Stability: Stable

Source: Marko Salmenkivi

Id: S9

Name: Setting the proposal strategies for variables

Description: The user must be able to choose the proposal strategy for
each parameter. Possible choices are

1. Fixed proposal strategy: The next proposed values for
a parameter is taken from its proposal distribution.

2. Random walk: The next proposed value for a param-
eter is created by adding a value taken from the pro-
posal distribution to the current value of the parame-
ter.

Rationale:
Priority: Essential
Stability: Unstable

Source:

Marko Salmenkivi

Id: S10

Name: Proposal distributions

Description: The user must be able to set the proposal distributions for
each parameter group. If the proposal distribution for a pa-
rameter is not given, the prior distribution of the parameter
is used as fixed proposal distribution (see S9).

Rationale:

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: S11

Name: Setting initial values

Description: The user must be able to set the initial values for the param-
eters whose values are not fixed in data. If the initial values
are not given, the program must display an error message.
(The program doesn’t have to generate the initial values by
itself.)

Rationale: The initial values affect the convergence of the simulation
run.

Priority: Essential

Stability: Stable

Source:

Marko Salmenkivi

1d:

S12

Name: Defining parameters to output

Description: The user must be able to define which parameters are output
during the simulation.

Rationale: It’s not reasonble to output all parameters. The user might
want to gain information about a small subset of all param-
eters.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: S14

Name: Informing the user about the progress

Description: While simulating, the program must display information
about the progress; that is, the number of the current iter-
ation, or a percentage of iterations done.

Rationale: The simulations can last for long time, so the user would
possibly like to know how much of the simulation is already
done and estimate how much time the rest of the simulation
might take.

Priority: Essential

Stability: Stable

Source:

Marko Salmenkivi

Id: S15

Name: Soft stop

Description: The user could be able to stop the simulation so that the
remaining iteration is run and the output files are written so
that it’s possible to continue the simulation.

Rationale: If the user stops the appication (for example by pressing Ctrl
+ ¢), it might not be possible to continue the simulation and
the output files might be only partially written.

Priority: Optional

Stability: Stable

Source: Marja Hassinen

Id: S16

Name: Parameters in random walk

Description: The parameters of proposal distribution can depend on the
variable’s previous value in random walk proposal strategy.

Rationale:

Priority: Optional

Stability: Stable

Source: Marko Salmenkivi

5.4 Output requirements

This section lists requirements related to the output of the program.

1d:

OP1

Name: Writing output into a file

Description: The program must be able to write output into a file.

Rationale: Files are much easier to use than standard output. The pro-
gram output may be thousands of lines.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: 0]/

Name: Output file names

Description: The user must be able to specify the file names of the output
files.

Rationale:

Priority: Essential

Stability: Stable

Source:

Marko Salmenkivi

Id: OP3

Name: The output

Description: The output of the program consists of points of the given
variables’ posterior distributions. The columns contain val-
ues of the parameters and the lines represent different itera-
tions.

Rationale: This is the primary aim of the program.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: OP4

Name: Information written to output files

Description: There should be some information about the simulation in
the beginning of the output file: the number of iterations
and burn-in iterations, the thinning factor and the name of
the model (if specified). There should also be information
about the names of the variables whose values the output
describes. The lines that contain this information must be-
gin with a #-sign.

Rationale: The user would like to compare the outputs of different sim-
ulations. This information helps the user to identify differ-
ent simulations.

Priority: Essential

Stability: Unstable - More or different information might be desired.

Source:

Marko Salmenkivi

Z/

1d:

OP5

Name: Summary of the simulation

Description: The program should write a summary about the simulation
into a separate file. The summary contains the number of
proposed changes and the frequency of successful changes
for each parameter.

Rationale: The user migh want to gain information about which pa-
rameters are difficult to update.

Priority: Conditional

Stability: Stable

Source: Marko Salmenkivi

Id: OP6

Name: File access check

Description: The program must check if the output file is available to be
written before beginning the simulation. If not, the program
must print an error message.

Rationale: It would be very frustrating if instead of results after running
a simulation the user would get nothing.

Priority: Conditional

Stability: Stable

Source:

Joonas Kukkonen

1d:
Name:

Description:

Rationale:

Priority:
Stability:

Source:

OP8

Continuing the simulation

The last values of the simulation could be saved into a sep-
arate file and it could be possible to automatically use them
as initial values for another run of the simulation. (That
means that the initial values could be read from a separate

file.)

This makes it possible to run a simulation easily in multiple
parts.

Optional
Stable

Marko Salmenkivi

5.5 General error conditions

Id:
Name:

Description:

Rationale:
Priority:
Stability:

Source:

El
File not found

If a file specified as input isn’t available (cannot be found or
cannot be read), the program must display an error message.

Essential
Stable

Vesa Vainio

Id: E2

Name: Reporting syntax errors

Description: If the file defining the model or a file including simulation
parameters is syntactically invalid, the program must dis-
play an informative error message describing the nature of
the error.

Rationale: Makes the user’s work easier.

Priority: Optional

Stability: Stable

Source: Anni Kotilainen

Id: E3

Name: Reporting semantic errors

Description: If the file defining the model or a file including simulation
technical parameters is semantically invalid, the program
could display an error message.

Rationale:

Priority: Optional

Stability: Unstable

Source: Anni Kotilainen

Note: Requirements related to error conditions in output are defined in the chapter “Out-
put requirements” and requirements related to error conditions related to data are defined
in the chapter “Data requirements”.

5.6 Non-functional requirements

Id: N1

Name: Working on Linux

Description: The program must function correctly on a Linux-based op-
erating system.

Rationale: Linux is widely used by the intended users of the software.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

Id: N2

Name: The implementation language

Description: The efficiency of implementation must be a primary con-
cern in the choice of the implementation language. As a
result, Fortran 90/95 has been chosen for the implementa-
tion.

Rationale: The simulations require a large amount of computation and
as such require vast amounts of time. This demands effi-
ciency.

Priority: Essential

Stability: Stable

Source: Marko Salmenkivi

o1

1d:

N3

Name: Parallel computation

Description: The program could be able to utilize multiple processors for
distributed computation.

Rationale: This allows for greater efficiency.

Priority: Optional

Stability: Stable

Source: Marko Salmenkivi

Id: N4

Name: Graphical user interface

Description: The program could include a graphical user interface.

Rationale: This would make the program easier to use.

Priority: Optional

Stability: Unstable

Source: Anni Kotilainen

5.7 General requirements

This section contains requirements that do not fall under the other categories, or should

be in many of them.

1d:

Name:

Description:

Rationale:
Priority:
Stability:

Source:

Gl
Adding comments to definition files

It should be possible to add comments into the definition
files. (Definition files = input files - data files)

Conditional
Stable

Marko Salmenkivi

6 System architecture

This section contains a simple model of the software and its inputs and outputs, followed
by a more elaborate model.

Model

Posterior points

Data —+»| The software

f

Simulation parameters

v

Summa ry

Last values

Figure 4: The software, simply put

Update strategy Iterations

Basic simulation parameters

Blocking

Setting simulation options

Gibbs sampling

Legend:

File or component

Aninput or output file.
{a component if inside
the dotted outline)

Ain attribute

i R

&

Initial values

— 3] Sinulation system [€—

Metropolis-Hastings

ad

Data

1 A

Model processing

Library of distributions

summa ry Posterior points Last values

Figure 5: A more elaborate picture of the software

7 System evolution

In the future, the desired format of the output files might change. Also the requirements
of the program might change to include:

e More distributions to choose from.

More algorithm choices in addition to the Metropolis-Hastings and Gibbs sampling.

e More ways to define the number of updates for parameters.

More proposal strategies for variables.

Better detection of semantic errors in input files.

Graphical user interface.

8 References

Bass Bassist: A Tool for MCMC Simulation of Statistical Models
http://www.cs.helsinki.fi/research/fdk/bassist/

Fort01 Haataja, J., Rahola, J. and Ruokolainen, J., Fortran 90/95. Picaset Oy, Helsinki, 2001.
http://www.csc.fi/oppaat/f95/f95.pdf

IEEE98 IEEE Recommended Practice for Software Requirements Specifications

Rand Definition of Random Fields in Encyclopedia
http://encyclopedia.laborlawtalk.com/Random_fields

Tode04 Pekka Tuominen: Todennikoisyyslaskenta I

MathOS5 http://mathworld.wolfram.com/

