
PIANOS project plan

Group Linja

Helsinki 7th September 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Joonas Kukkonen
Marja Hassinen
Eemil Lagerspetz

Client
Marko Salmenkivi

Project Masters
Juha Taina
Vesa Vainio (Instructor)

Homepage
http://www.cs.helsinki.fi/group/linja

i

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Current systems . 1

1.3 Version history . 1

1.4 Overview of the project plan . 2

2 Project organization 3

2.1 Interest groups . 3

2.2 Responsibilities . 3

3 Communication and data storage 4

3.1 Weekly meetings . 4

3.2 Other methods of communication . 4

3.3 Data storage . 4

4 Risk analysis 5

4.1 Risk ratings . 5

4.2 List of risks . 6

4.2.1 Personnel related . 6

4.2.2 Data issues . 6

4.2.3 Planning risks . 7

4.2.4 Technical risks . 10

5 Hardware and software requirements 12

5.1 Hardware requirements . 12

5.2 Software requirements . 12

6 Project schedule 13

6.1 Phases . 13

6.2 Milestones . 13

6.3 Project size estimation . 14

6.3.1 Function points . 14

6.3.2 Lines of code . 15

ii

6.4 Project schedule . 15

7 Methods of monitoring and reporting 18

7.1 Reporting working hours . 18

7.2 Weekly reporting . 19

7.3 Reporting to the Software Engineering Project’s information system . . . 20

8 Quality assurance 22

8.1 Reviews . 22

8.2 Coding style . 22

8.3 Testing . 22

8.3.1 System tests . 22

8.3.2 Unit and integration tests . 23

8.3.3 Phases of testing . 23

8.3.4 Testing practices used . 23

9 References 25

1

1 Introduction

This section describes the project plan for the PIANOS project.

The project plan defines the timetable and the program to be developed, assesses risks,
estimates the size and complexity of the program and introduces the project team and
communication methods.

This document is used to manage the project. Also the customer and the project supervisor
are able to track the project with this document since it is updated regularly.

1.1 Goals

The project’s goal is to produce a program for the University of Helsinki’s spatial data
analysis research group. The program analyzes spatial data by using a prior distribution
and a mathematical model to calculate the posterior distribution for a set of variables.
Certain statistical measures are then calculated from the posterior distribution. The project
must deliver by the 2nd of September 2005.

1.2 Current systems

The software is related to another currently in use, named Bassist: ‘Bassist is a tool that
automates the use of hierarchical Bayesian models in complex analysis tasks. Such mod-
els offer a powerful framework for modeling statistically complex real-world phenomena.’
[Bass]

Currently the research group is using BASSIST to analyze spatial problems. BASSIST
wasn’t designed for problems with spatial dependencies. It’s modeling language lacks
features which would allow efficient definition of spatial problems. The goal is to con-
centrate on a small portion of spatial problems which can’t be solved efficiently with
BASSIST.

1.3 Version history

Version Date Modifications
1.0 27.05.2005 The reviewed version without modifications
1.1 01.06.2005 The final modified version

2

1.4 Overview of the project plan

1. Introduction Describes this document and the program being produced.

2. Project organization Describes the organization and people involved in this
project.

3. Communication and
data storage

Describes the communication methods that the project per-
sonnel use and the data storage methods used.

4. Risk analysis Describes the risks involved in the project. Each risk has a
probability and impact rating. The list is updated to show
current risks.

5. Hardware and soft-
ware requirements

Describes the working environment of the program.

6. Project schedule Describes the phases, milestones and timetable of the
project. The chapter gives an overall description of the soft-
ware engineering process. The chapter also describes func-
tion points and a size estimate of the project.

7. Monitoring and re-
porting

Describes the ways the project is being tracked and docu-
mentation.

8. Quality assurance Describes the measures taken to ensure the quality of the
product.

3

2 Project organization

2.1 Interest groups

The project group

Name Mobile phone E-mail
Joonas Kukkonen 044-5500259 jkukkone(at)cs.helsinki.fi
Marja Hassinen 050-4914517 mhassine(at)cs.helsinki.fi
Eemil Lagerspetz 040-7605141 lagerspe(at)cs.helsinki.fi

The client: Marko Salmenkivi
The client’s assistant and the project’s technical advisor: Esa Junttila

The instructor: Vesa Vainio (Mobile phone: 040-5636966, E-mail: vainio(at)cs.helsinki.fi)

2.2 Responsibilities

Name Role
Joonas Kukkonen Project Manager
Marja Hassinen Planning Manager
Eemil Lagerspetz Technical Support Manager

Descriptions of the roles

• The Project Manager is the chairman of the group meetings. He represents the
project group to the client, coordinates the work and composes the weekly reports.

• The Software Manager coordinates the planning of the software architecture and
monitors the progress of the development.1

• The Planning Manager coordinates the schedule planning and observes the project’s
progress. She also controls the listings of the work hours and gathers statistics about
them.

• The Quality Manager makes sure that the working habits of the group ensure good
quality. Her responsibilities also include organizing the reviews and coordinating
the test planning.2

• The Technical Support Manager takes care of the tools used in the project. The tools
include the group’s www-pages, the CVS version control system, the LATEXpublishing
system and the programming tools.

1The Software Manager will be chosen later; the former Software Manager left the project.
2The responsibilities of the Quality Manager have been handed over to the Planning Manager, since the

Quality Manager left the project.

4

3 Communication and data storage

3.1 Weekly meetings

All of the important decisions concerning project matters are done in the weekly meet-
ings. These meetings are carried out at the department of Computer Science. These are
the formal, primary method of communication. The regular meetings are scheduled on
weekdays throughout the project like this:

Mondays 13-15 in BK106
Wednesdays 12-14 in BK106
Fridays 14-16 in BK106

Extra meetings to be scheduled will be discussed during the meetings.

3.2 Other methods of communication

To supplement the weekly meetings the project has a web page on which all informally
communicated but important information will be displayed; this page is located at
‘http://www.cs.helsinki.fi/group/linja/’.
For purposes of internal communication the project members use a mailing list that con-
tains everyone’s e-mail address. The list has the address:
‘ohtuv05-linja-list(at)cs.Helsinki.FI’.
Everything of crucial importance will be posted there and displayed on the project web
page. Informal communication between project members is also carried out on other
media, including irc, on the channel #ohtup_linja, and mobile phones.

3.3 Data storage

For data storage the project uses CVS, with the main repository on the CS computer
system at ‘/home/group/linja/CVS/’. The project’s files reside in the module ‘project’.
All modified files will be updated to that repository, and the dept. of CS’s extensive
backup system will ensure that the project data stays safe.

5

4 Risk analysis

This section deals with the risks involved in the project. Each risk is described and given
probability- and seriousness ratings. Steps to counteract a risk are described after it. This
list of risks will update as the project progresses and risks are dealt with. Newly found
risks will be added to reflect the state of the project.

Each risk has a name, status, a longer description, probability and seriousness and some
measures to prevent it and/or to minimize its effects if it comes true.

The name is a very short description of the risk. It should not be longer than a few words.
Longer descriptions are placed in the risk’s description-section. a risk’s Status indicates
how the preventive measures have been taken into effect. The status is one of: Active (The
risk is waiting to happen), Prevented (The risk has been negated and cannot come true),
Mitigated (Measures have been taken to reduce the probability of the risk), or Realized
(The risk has come true)

The Probability of a risk can be Low, Moderate or High, where Low could be something
like 0% to 10%, Moderate from 10% to 40% and High from 40% up. These are guidelines,
of course the ‘true probability’ of a risk cannot be known.

A risk’s Seriousness has similar values with the Probability. Here Low indicates that the
risk, if it comes true, would mean a minor setback, say 1-2 days of more work. Moderate
could be 2-4 days of extra trouble and High might mean even a week’s additional work.
Every risk includes preventive measures to take against it and a plan to minimize its effect
if it comes true. Either of these may not be appropriate for all the risks; if so, the reason is
indicated in its respective section. These are not comprehensive measures; more extensive
prevention is advised. These are simple guidelines for actions to take.

4.1 Risk ratings

Overview of the rating system used:

Risk name This is a very short description of the risk.
Status This is the risk’s status — one of ‘Active’, ‘Mitigated’, ‘Pre-

vented’ or ‘Realized’
Risk description A longer description, maybe including an example case in

a few words.
Probability The likelihood of the risk coming true, on a scale of ‘Low,

Moderate, High’.
Seriousness An estimate of impact on the project, ‘High’ being the most

serious, ‘Moderate’ and ‘Low’ the other choices.
Possible prevention Actions to take to reduce the likelihood of the risk or negate

it altogether.
Minimizing the impact Considerations as to how to proceed if indeed the risk comes

true.

6

4.2 List of risks

4.2.1 Personnel related

Risk name Temporary loss of work force
Status Realized
Risk description Someone can’t take part in the project work for a short pe-

riod of time. (For example someone gets ill.)
Probability High
Seriousness Low
Possible prevention Schedule the work evenly for the work period. Minimizing

stress.
Minimizing the impact Keep the missing person up-to-date via e-mail or other com-

munication methods. Delegate the missing person’s duties
among other workers.

Risk name Permanent loss of work force
Status Realized
Risk description Someone must quit the project. (For example someone gets

seriously ill.)
Probability Low
Seriousness High
Possible prevention Document source code so that everyone else can understand

how it works. Keep people informed on progress done with
sufficient communication.

Minimizing the impact Reconsider the limits of the project. Possibly drop some of
the lower priority requirements.

4.2.2 Data issues

Risk name CS network failure
Status Realized
Risk description The CVS or the Helsinki University servers are down, caus-

ing some data to be unreachable or inability to communi-
cate.

Probability Moderate
Seriousness Moderate
Possible prevention This is a project-independent matter.
Minimizing the impact Everyone’s CVS snapshots can be combined and a new

repository can be easily built. In case of email failure, IRC
can be used instead.

7

Risk name Loss of project data
Status Prevented
Risk description Some of the group’s files are lost. (For example because of

a computer virus or physical damage).
Probability Moderate
Seriousness Moderate
Possible prevention Use virtual workspaces and version control systems so that

copies of the files will be available and backed up at a safe
location. Effectively negates the risk.

Minimizing the impact No reasonable means to minimize

4.2.3 Planning risks

Risk name Delay
Status Mitigated
Risk description A part of the project is delayed.
Probability Moderate
Seriousness High
Possible prevention Control the working hours of everyone. Plan the schedule

with extra space for adjustment. Schedule enough time for
every part of the project.

Minimizing the impact Adjust the timetable. Re-evaluate the project limits. Work
some more, if reasonable.

Risk name Schedule pressure
Status Active
Risk description Time grows short, the schedule presses on. The project

quality decreases.
Probability Moderate
Seriousness Moderate
Possible prevention Plan the schedule with extra space for adjustment. Priori-

tize requirements so that at least the essential ones will be
implementable in the given time frame.

Minimizing the impact Re-evaluate the project limits, drop some of the lower pri-
ority requirements, if necessary.

8

Risk name Evolution of requirements
Status Active
Risk description Requirements change extensively on-the-fly, altering plans

and implementation.
Probability Low
Seriousness High
Possible prevention Gather an exhaustive list of requirements for the require-

ments specification document, then freeze the essential re-
quirements, planning for and implementing the require-
ments specified therein.

Minimizing the impact Implement essential requirements, don’t accept new essen-
tial requirements.

Risk name Over-planning
Status Active
Risk description Extensive planning results in problems when it is discov-

ered in the implementation phase that the plans must be al-
tered to produce a functioning software.

Probability Moderate
Seriousness Moderate
Possible prevention Don’t get alienated from the implementation altogether; try

planning solutions in practice sufficiently.
Minimizing the impact Rationalize the plan, re-planning the parts in conflict with

reality.

Risk name Over-prototyping
Status Active
Risk description Testing everything in practice results in haphazard imple-

mentation and too little planning.
Probability Moderate
Seriousness Moderate
Possible prevention Do enough planning to balance the prototyping.
Minimizing the impact Concentrate on design for a while.

9

Risk name Harder than expected
Status Active
Risk description A component is found to be harder to implement than ex-

pected.
Probability Moderate
Seriousness Moderate
Possible prevention Prototype parts of the components to get a picture of their

required internal complexity. Implement all the crucial data
structures and algorithms in groups of people (opposed to
people working alone).

Minimizing the impact Implement the parts as described above.

Risk name The problem is more extensive than expected
Status Active
Risk description The software is discovered to be too extensive to implement

in the given time frame.
Probability Moderate
Seriousness High
Possible prevention Analyze the problem thoroughly in the analysis phase.
Minimizing the impact Implement only essential requirements, reducing the work

to be done.

Risk name Incompatibility
Status Active
Risk description Some parts of the software don’t work with the other parts

like they should.
Probability Moderate
Seriousness High
Possible prevention Document component interfaces in a specific manner so that

there is no chance of misunderstanding. Communicate with
other group members so that everyone knows how the parts
should fit together.

Minimizing the impact Reimplement the parts by everyone’s combined efforts.

10

4.2.4 Technical risks

Risk name Fortran issues
Status Active
Risk description Problems with the Fortran compiler or the Fortran language.
Probability Moderate
Seriousness High
Possible prevention Try other Fortran compilers in addition to the GNU Fortran

compiler. Have project members study enough Fortran to
understand how the language works.

Minimizing the impact Change the Fortran compiler used. Try different structures
in the language.

Risk name Mis-implementation
Status Active
Risk description It is discovered that the product being built does not con-

form to the customer’s idea of the software.
Probability Moderate
Seriousness Moderate
Possible prevention Verification and Validation.
Minimizing the impact Contact the customer and negotiate on further development.

Risk name Wrong approach
Status Active
Risk description A problem in the technical level is being solved in the wrong

manner. (For example: too inefficiently)
Probability Moderate
Seriousness High
Possible prevention Implement all the crucial data structures and algorithms in

groups of people (opposed to people working alone)
Minimizing the impact Find the correct solution and reimplement the part.

11

Risk name Lack of technical specification
Status Active
Risk description Critical concepts of the implementation have been left am-

biguously defined.
Probability Moderate
Seriousness Moderate
Possible prevention Use explicit definitions, avoid ambiguous words.
Minimizing the impact Define the concept later on in specific terms, integrate the

use of the concept to match the definition.

12

5 Hardware and software requirements

5.1 Hardware requirements

The software, once finished, will not pose any hardware requirements for itself. These re-
quirements can be derived from hardware required by software that the program requires.

5.2 Software requirements

The software requires a functioning Fortran (90/95) compiler, so far we have planned
for the open-source g95 to be this compiler. Other compilers may be used, and it is
possible that the compiling can be left to the user for compliance with other compilers or
environments without compilers.

The software is designed to run under a Linux-based operating system. Guarantees on
other operating systems cannot be provided.

The requirements on processor speed of efficient running of the programs produced will
depend heavily on the complexity of the problem a particular program was produced to
solve. There are no guarantees of execution times on given processors. This may change
as the project progresses.

13

6 Project schedule

The PIANOS project will follow the classical waterfall software development process.
The software product life cycle consists of analysis, design, implementation and testing
phases.

6.1 Phases

The analysis phase is centered around the software requirements specification (SRS). The
analysis phase is complete when a software requirements specification is produced. In
addition to the SRS, a general project plan including initial risk assessment and schedule
are realized.

The design phase is focused on software architecture and testing design. Required de-
liverables are a software design document and a software testing document. Additional
deliverables may include technical and user interfaces prototypes.

During the implementation phase the components and other features of the system are
developed. At the end of this phase the software product is expected to be fully featured.
Unit tests are run in accordance to the main components.

The testing and finishing phase concentrates on integration and system testing. User man-
ual and release packaging are also produced during this phase. This phase is complete
when the software and necessary documents are delivered to the client.

6.2 Milestones

In the software development process there are four major milestones. The milestones are
scheduled at the end of each phase and they should be mostly complete3 before moving
to the next phase. Consequently, the progress of the project and the produced deliverables
are reviewed when each milestone is reached.

Date Deliverable
27.5. Project plan (final)
10.6. Software requirements specification (draft)
17.6. Software requirements specification (final)
24.6. Software design document (draft)
22.7. Software design document (final)
19.8. Software product (executable version)
2.9 Final software product (release)

3Strictly linear schedule is not required

14

6.3 Project size estimation

6.3.1 Function points

The function point method is used as the primary tool in size estimation. Size estimates
are updated during the project according to available information.

Initial function point (FP) estimate can be obtained by considering data movements across
application boundaries. The input of the application is likely to consist of a varying set
of data and a possibly complex description of the dependencies between data attributes.
The output of the application is likely to consist of a small number of characteristic values
describing the data and a collection of samples based on the information provided by the
model and the data set. A summary of the FP analysis is shown below.

Simple Average Complex Total
User inputs 3 * 3 2 * 4 0 * 6 17
User outputs 1 * 4 0 * 5 0 * 7 4
User inquiries 0 * 3 0 * 4 0 * 6 0
Files 1 * 5 1 * 10 1 * 15 30
External interfaces 0 * 5 0 * 7 0 * 10 0

At total: 51 function points

Simple user inputs include

• Some simulation parameters: number of iterations, number of burn-in iterations,
the thinning (?) factor

Average user inputs include

• Some simulation parameters: proposal distributions to different parameters, prelim-
inary values to different parameters

Complex user inputs include

• Some simulation parameters: the updating strategy

Simple user outputs include

• Samples from the posterior distribution

Simple files include

• The matrix describing which squares or cities are adjacent to each other

Average complexity files include

• The data (the observations and some other information - for example the observa-
tion rates)

15

Complex files include

• The model

Complexity adjustment factors

Each question is answered using a scale that ranges from 0 (not important) to 5 (very
important).

1. Does the system require reliable backup and recovery? 0
2. Are data communications required? 0
3. Are there distributed processing functions? 1
4. Is performance critical? 4
5. Will the system run in an existing, heavily utilized operational environment? ?
6. Does the system require on-line data entry ?
7. Does the on-line data entry require ... multiple screens or operations? ?
8. Are the master files updated on-line? ?
9. Are the inputs, outputs, files, or inquiries complex? 5
10. Is the internal processing complex? 5
11. Is the code designed to be reusable? 3
12. Are conversion and installation included in the design? 0
13. Is the system designed for multiple installations in different organizations? 0
14. Is the application designed to facilitate change and ease of use by the user? 3

The sum of the answers is 21.

Now it’s possible to calculate the FP estimate by using the formula

FP = count-total * (0.65 + 0.01 * answers) = 51 * (0.65 + 0.01 * 21) = 43.86

6.3.2 Lines of code

Lines of code (LOC) can be estimated based on the previous implementation of a simi-
lar system, Bassist. Since Bassist has approximately 12K lines of code and PIANOS is
supposed to implement only a limited subset of the functionality available in Bassist, it is
likely that PIANOS LOC will be around 2K - 6K.

Lines of code can also be estimated using function points. It is estimated that the average
ratio when considering Fortran is 106 LOC / FP.

Using the FP calculation above the corresponding LOC estimate is about 4600 lines.

6.4 Project schedule

The project will run for 16 weeks, two of which are to be holidays. The holiday will be
4.7. - 17.7. (weeks 27 and 28).

Everyone should work at least for 240 hours, so the working rate should be at least 17
hours / week from the beginning.

16

The phases of the project are shown in the GANTT diagram at the end of this chapter.

17

18

7 Methods of monitoring and reporting

7.1 Reporting working hours

All project group members will report their working hours in a file in the CVS. The file
is /doc/reporting/hours/id.txt, where id is the member’s user name in the CS computer
system.

Working hours are recommended to be updated to the file daily. The absolute deadline is
the next week’s Monday, as they are required in the weekly report.

A program called Report.pl will be used to gather statistics about the working hours. For
that reason, all the working hour reporting files must be in the following format:

• The first line is the member’s name.

• Following lines are in the format ‘date phase hours description’. The parts must be
separated by a single tabulator.

• The file may include comments, those lines must begin with #.

The format for date must be dd.mm.yyyy, zeros in front of numbers may be skipped. For
example, it’s possible to write 23.5.2005 instead of 23.05.2005.

Phase is a four letter code of the phase on which the time was spent. The phase codes are:

PROJ Project planning
REQU Requirements analysis
DESI Design
IMPL Implementation
TEST Testing
OTPR Other deliverables (for example writing the user’s manual or installation scripts)
KNOW Getting to know the problem scope and environment
MEET Meeting with the project group and preparing for the meetings
INST Installing tools, learning to use them and maintaining them
OTHE Anything that doesn’t fall under the other categories

Hours are reported in half an hour’s precision.

19

7.2 Weekly reporting

The group will produce weekly reports concerning the project’s progress. They are written
by Joonas, Marja will provide the working hour statistics. During the project, last week’s
report will be returned to the instructor by Tuesday morning.

A weekly report includes:

• Working hours during the week

• Tasks finished or agreed on during the week and all unfinished tasks

• Problems solved during the week and all unsolved problems

20

7.3 Reporting to the Software Engineering Project’s information sys-
tem

The Software Engineering Project has an information system where all groups must report
some information about their projects.

The information system is located at http://db.cs.helsinki.fi/ tkt_ohtu/metrics/v0/index.php.

Every group member must report their working hours on the following dates:

• Monday 30.5.

• Monday 13.6.

• Monday 27.6.

• (Monday 11.7. - this is during the holiday)

• Monday 25.7.

• Monday 8.8.

• Monday 22.8.

• Friday 2.9.

Also some information must be reported about the project planning, requirements anal-
ysis, design and implementation phases. This will be done by Joonas. In all phases, the
following dates are reported:

• When the phase started

• When the phase was supposed to end

• When the phase really ended

Additional information about project planning:

• The project’s size estimates (lines of code and function points)

Additional information about requirements analysis:

• Number of requirements, use cases and words in the document

• The project’s size estimates (lines of code and function points)

Additional information about the design phase:

21

• Number of operations designed according to the Requirements Specifications, op-
erations changed and new operations

• Number of classes

• Number of pages, words, diagrams and pictures in the Design Document

Additional information about the implementation phase:

• Implementation languages

• Number of operations implemented according to the Design Document, operations
changed and new operations

• The project’s size estimates (lines of code and function points)

• Number of classes, methods per class, depth of inheritance hierarchy, number of
immediate subclasses and connections between the classes

22

8 Quality assurance

8.1 Reviews

All documents will be reviewed by the project group and other appropriate interest groups.
In addition to the documents, most relevant parts of the program code will also be re-
viewed.

A document or part of code will be frozen a few days before it’s review. Between freezing
and the review, no changes may be made to it.

Document Freezing date Review
Requirements specifications 13.6. 17.6.
Design document 18.7. 20.7.

Anni is responsible for organizing the reviews and she will prepare a checklist for the
document to be reviewed by the freezing date. All participating to the review will read the
frozen document in advance, looking for possible errors and comparing it to the checklist.

In the review, found errors will only be noted and written down. They will be assigned to
someone to be fixed later, usually the person who wrote the part. The errors will not be
discussed during the review, that way as many errors as possible may be found.

8.2 Coding style

The project group will follow a uniform coding style throughout the program.

• Java code will follow the standard convention for Java, described in [Java99].

• Fortran code will follow the convention proposed in [Fort01].

8.3 Testing

Testing is an integral part of the development of any software. It is a way to (1) prove in
practice that the software meets the requirements it has been developed to fulfill. Also,
(2) it verifies that the software works properly in the usual cases.

8.3.1 System tests

Tests of the former category are called system tests: They verify that the software, as a
whole, meets the required criteria. System tests are, in a way, superficial: They don’t
concern the inner structure of the software, they only look at the input-output interaction
and functionality. In specific efficiency matters they may measure the time it takes for a

23

function to complete. This enables us to design system tests as early as in the analysis
phase.

8.3.2 Unit and integration tests

Tests of the latter category have two subcategories: unit tests and integration tests. The
former ones check that individual parts of the software function as they were planned to,
and the latter ones, integration tests, check that the parts function correctly with the other
parts that they are planned to interact with. So, naturally, designing both of these tests
requires the information brought by the design phase, where the internal structure of the
software is planned.

8.3.3 Phases of testing

Any part should be tested before it is finished, and any part that is tested as functional is
finished unless further requirements are set. The testing of individual parts is carried out
in the implementation phase with the unit tests in this manner. Also, parts with common
interfaces are tested with integration tests so that they function together in the expected
manner. After the software is fully featured the system tests come in: They are to verify
in the testing phase that all the requirements that were planned indeed are fulfilled. After
the software passes the system tests it could be considered ready for release.

8.3.4 Testing practices used

The project group will use a standard testing practice for code in the Java programming
language, such as JUnit. This will be decided later. For Fortran(90/95) another standard
might be used or tests could be designed in a non-standard way if that better suits the case.
A testing document will be produced and updated as components are tested; The testing
document will monitor the functionality implemented and that yet to be developed. The
document will contain detailed information about each test, which part(s) of the software
it is for, and in the case of system tests, the requirement that the test checks for.
The document lists bugs found and their status; these tell on a smaller scale about the
status of different parts and the completeness of different requirements.
Each bug entry can have a status of:

Open That is, discovered and not yet dealt with

Fixed Found and fixed, but not reviewed by the one that reported
the bug

Closed Found, fixed and verified to have been fixed by the person
who reported the bug

24

Bugs will be tracked and fixed in this manner through the course of the project.

25

9 References

Bass Bassist: A Tool for MCMC Simulation of Statistical Models
http://www.cs.helsinki.fi/research/fdk/bassist/

Fort01 Haataja, J., Rahola, J. and Ruokolainen, J., Fortran 90/95. Picaset Oy, Helsinki, 2001.
http://www.csc.fi/oppaat/f95/f95.pdf

Java99 Code Conventions for the Java Programming Language
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

