
PIANOS design document

Group Linja

Helsinki 7th September 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Joonas Kukkonen
Marja Hassinen
Eemil Lagerspetz

Client
Marko Salmenkivi

Project Masters
Juha Taina
Vesa Vainio (Instructor)

Homepage
http://www.cs.helsinki.fi/group/linja

i

Contents

1 Overview 1

1.1 Chapters . 1

1.2 Version history . 2

2 Glossary 3

2.1 Probabilistic inference . 3

2.2 Models and related concepts . 5

2.3 Metropolis-Hastings algorithm . 5

2.4 Naming conventions . 6

3 Architecture diagram 7

4 The format of input files 8

4.1 Model description language . 8

4.1.1 Names and constants . 8

4.1.2 Defining variables . 8

4.1.3 Defining entities . 10

4.1.4 Distribution defined by the user 11

4.2 Simulation parameters as input . 11

4.2.1 The burn-in length and the thinning factor 11

4.2.2 Initial values . 12

4.2.3 Proposal strategies and proposal distributions 14

4.2.4 The update strategy and the number of updates 15

4.2.5 Which parameters to output . 15

4.3 Adding distributions . 16

5 NAG library functions 18

5.1 Discrete distributions . 18

5.2 Continuous distributions . 18

6 Generated program 19

6.1 Data structures . 19

6.2 Modules . 21

ii

6.2.1 Module proposal . 22

6.2.2 Module input . 24

6.2.3 Module output . 26

6.2.4 Program main . 27

7 Generator 30

7.1 Operations of Generator . 32

8 Data structures 33

8.1 Variable . 33

8.1.1 Fields of Variable . 34

8.1.2 Operations of Variable . 35

8.2 Entity . 36

8.2.1 Fields of Entity . 37

8.2.2 Operations of Entity . 38

8.3 ComputationalModel . 39

8.3.1 Fields of ComputationalModel 40

8.3.2 Operations of ComputationalModel 41

8.4 Equation . 41

8.4.1 Fields of Equation . 42

8.4.2 Operations of Equation . 42

8.5 Distribution . 43

8.5.1 Fields of Distribution . 43

8.5.2 Operations of Distribution . 44

8.6 DistributionSkeleton . 45

8.6.1 Fields of DistributionSkeleton 46

8.6.2 Operations of DistributionSkeleton 46

8.7 DistributionFactory . 47

8.7.1 Fields of DistributionFactory . 47

8.7.2 Operations of DistributionFactory 47

8.8 UserDefinedDistribution . 47

8.8.1 Fields of UserDefinedDistribution 47

8.8.2 Operations of UserDefinedDistribution 47

iii

9 Modules 49

9.1 ComputationalModelParser . 49

9.1.1 Interface . 49

9.1.2 Internal operations . 50

9.1.3 Fields filled in by the parser . 50

9.2 FortranWriter . 52

9.2.1 Interface . 52

9.2.2 Indentation . 52

9.2.3 Line wrapping . 53

10 Algorithms 54

10.1 Linking . 54

10.1.1 Linking the Entity objects . 54

10.1.2 Linking the Variable, Distribution and Equation objects 55

10.2 Generating the acceptance probability calculation code 56

10.2.1 Indexing . 57

10.2.2 Loops . 59

10.2.3 Functional parameters . 60

10.2.4 Generating the function/subroutine calls 61

11 Correspondence between requirements and design 62

11.1 Model requirements . 62

11.2 Data requirements . 63

11.3 Simulation requirements . 63

11.4 Output requirements . 64

11.5 General error conditions . 64

11.6 Non-functional requirements . 64

11.7 General requirements . 64

12 References 65

1

1 Overview

This is a design document of the PIANOS project.

This document describes the design of the software corresponding to the Software re-
quirements specification document written earlier.

The software is implemented as a generator, which reads the input files (for example, the
model description) and generates a Fortran program which solves the particular simulation
problem associated with the particular model. The generator is implemented in Java.

A Fortran prototype which simulates an example model has also been implemented at the
design phase.

1.1 Chapters

1. Overview Describes this document’s purpose.

2. Glossary Explains the glossary used in this document.

3. Architecture dia-
gram

Describes the division of the software into the generator and
the executable program the generator produces.

4. The formats of input
files

Describes the formats of the model description language
and simulation parameter input files.

5. NAG library Describes the useful parts of the NAG library and their cor-
respondence to the distributions mentioned in the SRS.

6. Generated program Defines the modules, subroutines and functions of the gen-
erated program which the generator produces.

7. Generator Describes the generator at a general level.

8. Data structures Describes the data structures used in the generator program.

9. Modules Describes the modules of the generator program.

10. Algorithms Describes the algorithms the generator uses.

11. Requirements Describes which requirements are implemented and which
chapters in this document correspond to them.

2

1.2 Version history

Version Date Modifications
0.2 15.06.2005 The document template
1.0 25.07.2005 First complete draft
1.1 03.08.2005 Reviewed and corrected final

3

2 Glossary

2.1 Probabilistic inference

Random variable (synonym: stochastic variable): Function which combines events
with their probabilities. A numeric variable related to a random phenomenon (for example
throwing a dice). The value of the variable is determined if the result of the phenomenon
is known, otherwise only the probabilities of different values are known. [Tode04]

Discrete random variable: Random variable with a discrete range.

Point probability function: (Synonym: frequency function) Function f : R → R related
to discrete random variable X so that ∀x ∈ R : f(x) = P{X = x} = the probability that
the value of X is x. [Tode04]

Density function: f(x) is a density function iff

1. f ≥ 0

2. f is integrable in R and
∫ ∞
−∞ f(x)dx = 1.

[Tode04]

Cumulative distribution function: The function F : R → R is the cumulative distribu-
tion function associated with random variable X iff F (x) = P{X ≤ x} = the probability
that X is less than or equal to x. [Tode04]

Continuous distribution: A random variable has a continuous distribution as its density
function f if ∀a, b ∈ R : P{a ≤ X ≤ b} =

∫ b
a f(x)dx [Tode04]

Joint distribution: If X and Y are random variables, their joint distribution describes
how probable all the possible combinations of X and Y are.

Independence: Events A and B are independent, if the probability of B is independent
on whether A has happened or not. (For example if A = “it rains”, B = “when I throw
a dice the result is 6” and C=“when I throw a dice the result is even” then A and B are
independent but B and C are not.) [Tode04]

Conditional probability: If X and Y are random variables, the conditional probability
P{X = x|Y = y} means the probability that the value of X is x if it is assumed that the
value of Y is y.

Bayes’s rule: P{X = x|Y = y} = P{Y =y|X=x}·P{X=x}
P{Y =y}

. The rule is obtained from the
observation that P{Y = y|X = x} · P{X = x} = P{X = x AND Y = y}

Chaining: Using the Bayes’s rule many times consecutively.

Bayesian model: A model which connects dependent random variables to each other by
defining dependencies and conditional probabilities. The model defines the joint distribu-
tion of the variables.

Likelihood function: P{data|explanation} is called the likelihood function because it
defines how likely it is to get such a data if the real conditions are known. (For example if

4

we know that a bird resides at some area, then how likely it is to get the observations we
have already got.)

Markov random field: A random field that exhibits the Markovian property:
π(Xi = xi|Xj = xj, i 6= j) = π(Xi = xi|δi), Where δi is the set of neighbours for Xi.
That is, only the adjacent units affect the conditional probability. [Rand]

Discrete distributions:

• Uniform distribution

• Binomial distribution

• Geometric distribution

• Poisson distribution

Continuous distributions:

• Uniform distribution

• Normal distribution

• Multinomial distribution

• Exponential distribution

• Binormal distribution

• Lognormal distribution

• Beta distribution

• Gamma distribution

• Dirichlet distribution

Descriptions of these distributions can be found in [Math05].

Functional dependence: A condition between two variables X and Y so that the value of
X determines the value of Y unambiguously.

Stochastic dependence: A condition between two variables X and Y so that the value of
X doesn’t determine the value of Y but influences the probabilities of the possible values.

Spatial dependence: A special case of stochastic dependence where the dependence is
related to some spatial structure. (For example towns that are adjacent to each other
influence to each other.) The spatially dependent variables form a Markov random field.

Prior distribution: The prior distribution of the parameters describes their assumed joint
probability distribution before inferences based on the data are made.

5

Posterior distribution: The posterior distribution of the parameters describes their joint
probability distribution after inferences based on the data are made.

Marginal distribution: The prior or posterior distribution concerning only one parame-
ter.

2.2 Models and related concepts

Model: Means: Bayesian model

Variable: A variable is an entity in the model that can have an assigned value from its
range of values. Variables and their dependencies form the base of the problem that the
software is developed to solve.

Parameter: A parameter is a variable whose value is not defined by data.

Adjacency matrix: The adjacency matrix of a simple graph is a matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position ij according to whether i and
j are adjacent or not.

Floating point number: A computer representation of a real number with finite precision.

2.3 Metropolis-Hastings algorithm

Iteration: A single round of the algorithm when all the parameters have been updated
once.

Burn-in-iterations: The iterations that are run before any output is produced.

Thinning factor: The thinning factor t means that every tth iteration value is used in the
output and the rest are discarded.

Block: A set of parameters which are defined to be updated together. That is, the propos-
als are generated to all of them and the acceptance of all the proposals is decided at the
same time.

Update: Proposing a value to a parameter and then accepting it (the value changes) or
discarding it (the value remains the same).

Proposal strategy: The proposal strategy defines how the next proposed value is gener-
ated. Possible choises are

1. Fixed proposal strategy: The next proposed values for a parameter is taken from its
proposal distribution.

2. Random walk: The next proposed value for a parameter is created by adding a value
taken from the proposal distribution to the current value of the parameter.

Proposal distribution:

6

1. The distribution from which the next proposed value for a parameter is chosen
(when using the “Fixed proposal distribution” proposal strategy).

2. The distribution that is used in generating proposed values for a parameter by
adding a value taken from the distribution to the parameter’s current value (when
using the “Random walk” proposal strategy).

Update strategy: The update strategy describes which variables belong to the same
block. (See: Block) The update strategy also includes information about whether the
blocks are considered for updates in sequential order, whether the next block to update is
chosen at random or whether the block to update is chosen based on the block weights.

Convergence: The phenomenon that during the simulation the parameter values get
closer to the posterior distribution. The speed of the convergence depends on the initial
values and other simulation parameters.

2.4 Naming conventions

Fortran: Refers to the fortran programming language, version 90/95 specifically. fortran
refers to the whole Fortran family, and FORTRAN refers to FORTRAN/77 specifically.

Proposal: A new value cancidate obtained from the proposal distribution.

Frequency function is used to refer to a frequency function or a density function when it
is irrelevant which one there really is, that is, when it’s irrelevant whether the distribution
is discrete or continuous.

Variable is used to refer a variable or a parameter when it’s irrelevant which one there
really is.

Generator: Used to refer to the modules of the software that write out the specific exe-
cutable Program that carries out the simulation for a given simulation model.

Program: The program that is run to simulate the problem model. Synonym: generated
program.

Entity: A data structure of the Generator representing a repetitive structure (indexing
structure) of variables. For example alphai, xi both are part of the Entity indexed with i.

Variable group: All variables of a group, that is alphai for all i.

Parser: The ComputationalModelParser class used for reading the input files for the
Generator.

7

3 Architecture diagram

This section contains a diagram of the division of the software into the generator and the
executable program the generator produces.

Figure 1: A diagram of the software input/output files and data flow.

Figure 1 represents the generator and the result program that it produces, and how the data
files are used by them. Every rectangle is a file (except for the generator and the result
program). An arrow means that data from the component at the source of the arrow is
used by the component that the arrow leads to.

8

4 The format of input files

This section describes the format of the input files, that is the model description and the
files for the simulation technical parameters.

The input files are:

• The model (including names of data files)

• The burn-in iteration length and the thinning factor

• Proposal distributions adn proposal strategies

• Initial values

• Update strategy and the number of updates

• Parameters to output

4.1 Model description language

A model description consists of variable and entity definitions. It can also include com-
ment lines, any line beginning with ‘#’ is considered a comment.

The model description file consists of the following parts:

1. Definitions of global variables

2. Definitions of entities, which contain definitions of variables

4.1.1 Names and constants

Names of variables and entities can include lowercase letters ‘a’ - ‘z’. No other characters
are allowed. The variable names must not be equal reserved words of Fortran.

Floating point constants must be expressed by using the scientific syntax except that the
exponent “E” must be an uppercase “E”.

4.1.2 Defining variables

Variables can be either integers or floating point numbers. This is expressed by an ‘IN-
TEGER’ or ‘REAL’ in front of their names.

If the variable is functional, an equation must be provided. If the variable is stochastic, a
distribution must be provided. The syntax is:

type name = expression
type name ~ distribution

9

A variable must be defined before it can be used in other variables’ equations or distribu-
tions.

List of distributions

The following distributions are possible for INTEGER variables:

• discrete_uniform(INTEGER a, INTEGER b)

• binomial(INTEGER n, REAL p)

• poisson(REAL mu)

The following distributions are possible for REAL variables:

• continuous_uniform(REAL a, REAL b)

• beta(REAL alpha, REAL beta)

Examples:

REAL alpha ~ beta(0.1, 1.0)
INTEGER gamma ~ poisson(alpha)

List of operators allowed in equations

1) Functional parameters describing spatial relations

A special character & has a meaning “all neighbour units”. & x means “all x instances in
neighbour units”.

The following operations are possible:

• SUM(&variable)

• COUNT(&variable)

Note that functional parameters describing spatial relations can only appear inside entities.
Note also that the expressions SUM and COUNT cannot appear inside other expressions.

Examples:

REAL q=SUM(&x)
INTEGER c=COUNT(&x)
REAL p = q / c
the average of x in the neighbour units

2) Other functional parameters

The following operations are possible:

• +

10

• -

• *

• /

• ** (power expression in Fortran)

• EXP()

• LOG()

Examples:

REAL beta = alpha**2
REAL gamma = EXP(alpha + 1) / EXP(alpha - 1)

4.1.3 Defining entities

The first line, identified with ENTITY, defines the name of the entity, the data file where
all data about the entity is found (if some variables from the entity are taken from data), the
data name defining spatial relations (if exists) and which other entities the entity combines
(if the entity describes an intersection of two entities).

The variables related to the entity are defined inside the brackets. The variables are defined
as earlier except that is is possible to define where the variable is found in the data. This
is done by adding “(column_number)” after the variable name, where column number
defines the column of the data file in which the corresponding data is found. If the data
is a matrix, there is no single column containing the data and this situation is specified
simply by adding “(*)” after the variable name.

Examples:

ENTITY bird, "birds.txt"
{

REAL size(1)
}

In this example there is an entity called bird. It contains one variable which is taken from
data. The data is found in file birds.txt at column 1.

If no data is provided, the data file name must equal “”. It is also possible that an entity
has no variables in it. For example:

ENTITY bird, ""
{

}
\end{verbatim

11

ENTITY square, "squares.txt", "spatial.txt"
{

INTEGER northerness(1)
}

Similarly we define an entity called square. In this example square is a spatial unit, so a
file name of the adjacency matrix is given.

ENTITY observation, "observations.txt", combines(square, bird)
{

REAL p = EXP(alpha * northerness) / (1 + EXP(alpha * northerness))
INTEGER x ~ user_bernoulli(p)
INTEGER obs(*) ~ user_defined_points(x)

}

This example shows how to define an intersection entity. The combines-clause states that
the squares are the vertical units and birds are the horizontal units in the matrices related
to the intersection entity (for example, data matrices).

Note that there can be only one intersection entity and it cannot be spatial.

4.1.4 Distribution defined by the user

User-defined distributions can be used like the other distributions. The names of user-
defined distributions must begin with “user_”.

For example:

x ~ user_bernoulli(p)

See also: 4.3

4.2 Simulation parameters as input

4.2.1 The burn-in length and the thinning factor

The burn-in length and the thinning factor are both integers. They must be given in a
single file, given like in the example below:

?? simulation
? burn-in
1000

? thinning
4

The first line is a compulsory legend line.

12

4.2.2 Initial values

The user must provide initial values for all parameters. The initial values are given in a
single file.

The first line of the file must be:

?? initial values

The format of the file is:

1) Legend, which can be one of the following:

? parametername

? parametername begin:end

? parametername begin:end begin2:end2

2) The initial values in an array or a matrix corresponding to the legend.

The file may contain several consecutive legend - values - pairs.

An example:

Figure 2: A model with two intersecting entities

? gamma
4.0

13

The legend means that we are giving an initial value to a single variable on the line after
the legend.

? alpha 1:5
3.2
0.3
3.1
5.3
2.9

The legend describes that we are giving initial values to alpha1, alpha2, alpha3, alpha4

and alpha5 in an array on the lines following the legend line. After setting the initial
values, we have alpha1 = 3.2, alpha2 = 0.3 etc.

? beta 1:3
5.4
2.1
1.0

The legend means that we are giving initial values to beta1, beta2 and beta3 in an array on
the lines after the legend. After setting the initial values, we have beta1 = 5.4, beta2 = 2.1
etc.

? x 1:5 1:3
1.0 3.2 5.3
1.2 5.2 3.1
3.8 4.1 8.0
4.4 2.7 3.2
5.6 0.4 1.2

The legend describes that we are giving initial values to x1,1, x1,2, x1,3, x2,1, ...x5,3. The
values are in a matrix form after the legend line. The first index corresponds to the vertical
dimension and the second index corresponds to the horizontal dimension of the matrix.
After setting the initial values, we have x3,2 = 4.1 for example.

If some instances of, say, the variable obs are missing from the data, the user must provide
initial values for them.

? obs 4:4 1:1
4.3

This definition states that the initial value of obs4,1 is 4.3.

14

4.2.3 Proposal strategies and proposal distributions

The format of the proposal strategies and distributions input file is similar to the initial
values input file.

The first line of the file must be:

?? proposal distributions

An example of giving the proposal distributions:

? alpha all
poisson(3.0)

This expression states that the parameters alpha1, ..., alpha5 have the same proposal dis-
tribution Poisson(3.0) and the fixed proposal strategy is used as default.

If the parameter is global, the word “all” is not needed. For example:

? gamma
continuous_uniform(0.0, 2.0)

? x all
continuous_uniform(-1.0, 1.0) RW

This expression states that the parameters x1,1, ... use the random walk as proposal strat-
egy and the proposal distribution for them is continuous_uniform(-1.0, 1.0).

Possible distributions for INTEGER variables include:

• discrete_uniform(INTEGER a, INTEGER b)

• binomial(INTEGER n, REAL p)

• poisson(REAL mu)

Possible distributions for REAL variables include:

• continuous_uniform(REAL a, REAL b)

• beta(REAL alpha, REAL beta)

It is also possible to use a distribution defined by the user.

15

4.2.4 The update strategy and the number of updates

The first line of the specification file must be:

?? update

The format of the rest of the file depends on the update strategy to be chosen.

1) If the user wants to update the parameters in sequential order:

? strategy
sequential

? iterations
42

The user gives the number of iterations, that is: the parameters are updated once and then
the output is printed (considering the thinning factor of course) and this is repeated until
the iteration count is reached.

2) If the user wants the next parameter to update to be chosen at random:

? strategy
random

? updates
500

? x all
600

The user gives first gives the update strategy, then the default number of updates. Consid-
ering this example all parameters must be updated at least 500 times before the simulation
is finished. After giving the default number, the user can also give the number of updates
for a parameter group.

Note: It is possible to define the number of updates for a parameter group, not for a single
parameter instance (for example, for x but not for x1,6).

Note: The output is printed after each update so the user may want to use a bigger thinning
factor.

4.2.5 Which parameters to output

The parameters to output are defined in a manner similar to the initial values. For example:

The compulsory legend is:

?? output outputFile summaryFile

16

where outputFile is the filename of the output file and summaryFile is the filename of the
summary file.

? alpha all
? beta all
? gamma

This definition states that the parameter to output are all alphas, all betas and gamma.
Note that it is not possible to define that only some instances, for example alpha1, are
output.

4.3 Adding distributions

When the user wants to add an own distribution, the following steps are needed:

1. Decide a name for the distribution. The name must begin with “user_”.

2. Add an explanation line in the beginning of user_dist.f90.

3. Add subroutine user_name_freq() into the module user_dist.f90. The parameters
depend on the parameters of the distribution.

4. If the distribution could be used as a proposal distribution, add user_name_gen()
into the module user_dist.f90.

The parameters of user_name_freq and user_name_gen subroutines depend on the pa-
rameters of the distribution: the subroutine implementing the frequency function has two
additional parameters (the point on which the frequency is calculated and the result) and
the subroutine generating the proposals has one additional parameter (the array which to
generate proposals to).

Note that the generation subroutine is assumed to generate an array full of proposals.

Note also that the user might want to use the NAG library for existing generation subrou-
tines, see chapter 5.

The explanation has the following syntax:

! name param_count types gen_present

Where

• “param_count” is an an integer

• “types” contain as many types as param_count suggests

• each type is either INTEGER or REAL

17

• gen_present is .TRUE. if there is a subroutine that generates proposals from the
distribution, .FALSE. otherwise.

For example:

! user_defined_points 1 INTEGER .FALSE.

If the user wants to add many distributions all the explanations are written on consecutive
lines at the beginning of the file. Note that no other comment lines are allowed at the
beginning of the file.

18

5 NAG library functions

The correspondence between the NAG library subroutines / functions and the distributions
included in the Requirements specification document [requirement M10].

5.1 Discrete distributions

Distribution Frequency Generation

Uniform distribution (easy to calculate) G05DYF

Binomial distribution G01BJF G05EDF and G05EYF

Geometric distribution

Poisson distribution G01BKF G05DRF / G05ECF and G05EYF

5.2 Continuous distributions

Distribution Density Generation

Uniform distribution (easy to calculate) G05FAF

Normal distribution G05FDF

Multinomial distribution

Exponential distribution G05FBF

Binormal distribution

Lognormal distribution G05DEF

Gamma distribution G05FFF

Beta distribution G01EEF G05FEF

Dirichlet distribution

The distributions missing either generation or density/frequency subroutines will be left
to the user, as it has been agreed with the customer (unlike specified in the SRS).

19

6 Generated program

This section introduces the Program. It explains about the data structures of the Program,
outlines its structure in modules and summarizes the operations of each module. The
section provides deeper understanding of the simulation implementation, and serves as a
reference for building the Generator.

6.1 Data structures

Figure 3: A diagram of the generated data structures.

Figure 3 shows the data structures used in the generated program. The variable_int and
variable_real can represent both data variables and parameters. Each instance corre-
sponds for example to one alpha32 or x31,4. A variables instance represents a repetitive
structure of the model, for example alpha and x. The one_dim and two_dim are used for
one-dimensional and two-dimensional variable structures, respectively.

In the case that a variable comes from data that has missing values in it, the one_dim_missing
or two_dim_missing-index array contains the indices of the missing data, which are then

20

treated as parameters.

The fields update_count and updates_wanted are included only if the user has chosen the
random update strategy.

If the model has a spatial structure, it is represented with the help of the spatial array;
this array has as many rows as the spatial structure has elements, and as many columns
as is the greatest number of neighbours in the structure plus one. One row represents one
spatial element. The first column of each row contains the number of neighbours that
particular element has; the rest contain the indices of the neighbours.

21

6.2 Modules

Figure 4: A diagram of the generated modules and their subroutines.

Figure 4 illustrates the division of the generated program into modules. Each module is
placed in its own source file, which are indicated in the upper right corners.

For each subroutine and function the following information is included:

• Subroutine/function name: The name of the subroutine or the function in the pro-
gram.

• Description: What the subroutine or the function is meant to do.

• Parameters: The names, types and intents (IN, OUT, INOUT) of the parameters.

22

• Generating: What information is needed when the subroutine or the function is
generated.

This information should suffice for the implementation of the Generator and allow for
quicker understanding of the prototype code and the final generated program structure.

6.2.1 Module proposal

Subroutine name: generate_int

Description: Generates a buffer of new proposals for a given variable by
its name.

Parameters: CHARACTER(LEN=*), INTENT(IN) :: name
INTEGER, DIMENSION(:), INTENT(OUT) :: buffer

1. name:
On entry: The name of the variable to generate pro-
posals for, e. g. alpha

2. buffer:
On exit: The buffer filled with new proposals from
the variable’s proposal distribution.

Generating: All the names of the variable groups, their proposal distribu-
tions (names and parameters) and the corresponding func-
tions/subroutines.

23

Subroutine name: generate_real

Description: Generates a buffer of new proposals for a given variable by
its name.

Parameters: CHARACTER(LEN=*), INTENT(IN) :: name
REAL, DIMENSION(:), INTENT(OUT) :: buffer

1. name:
On entry: The name of the variable to generate pro-
posals for, e. g. alpha

2. buffer:
On exit: The buffer filled with new proposals from
the variable’s proposal distribution.

Generating: All the names of the variable groups, their proposal distribu-
tions (names and parameters) and the corresponding func-
tions/subroutines.

24

6.2.2 Module input

Subroutine name: read_data

Description: Reads the data from data files into the data structure defined
in figure 3.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the is_data and value fields
are set.

Generating:

• The names of the data files (for each file the generator
must generate a binary matrix describing which vari-
ables are not present in the data and generate a new
data file where the ‘no data’ characters are replaced
with zeros)

• The names of the variables and whether they are one-
dimensional or two-dimensional

• The loop lengths, that is, how many different entities
(birds, squares etc.) we have

25

Subroutine name: set_initial_values

Description: This subroutine reads the initial values from a data file into
the data structure defined in figure 3.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields are set cor-
responding the initial values.

Generating: The name of the initial values file. The names of the vari-
able groups and whether they are one-dimensional or two-
dimensional.

Subroutine name: set_spatial

Description: This subroutine reads the adjacency matrix from a file and
initializes the corresponding data structure.

Parameters: The structure defining spatial relationships, for example:
INTEGER, DIMENSION(300, 5), INTENT(IN) :: spatial
Note that the parameters depend on the model in use.

1. INTEGER, DIMENSION(...) :: spatial:
On entry: The data structure describing the spatial
relationships
On exit: The data structure correctly initialized. That
is, spatial(i, 1) defines how many neighbours unit i
(for example square i) has and spatial(i, 2) ... define
the indices of the neighbours.

Generating: The name of the adjacency matrix file. The type of the struc-
ture (the number of spatial units and the maximum number
of neighbours).

26

6.2.3 Module output

Subroutine name: write_output

Description: This subroutine writes the output of one iteration into the
output file. The file is opened and closed in the main pro-
gram.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(IN) :: alpha
TYPE(variables_int), INTENT(IN) :: beta
TYPE(variables_int), INTENT(IN) :: x
TYPE(variables_int), INTENT(IN) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model

Generating: Which parameters to write as output and whether they are
one-dimensional or two-dimensional.

Subroutine name: write_summary

Description: This subroutine writes the summary of the simulation into a
summary output file. The summary includes the number of
updates and successful changes for each parameter.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(IN) :: alpha
TYPE(variables_int), INTENT(IN) :: beta
TYPE(variables_int), INTENT(IN) :: x
TYPE(variables_int), INTENT(IN) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model

Generating: The names of the parameters and whether they are one-
dimensional or two-dimensional. The file name of the sum-
mary file.

27

6.2.4 Program main

Program name: main

Description: This is the main program which performs the simulation by
using the subroutines described below.

Generating:

• The names and types (real or integer) of the variables
in the model

• The name of the output file

• The loop lengths, that is, how many different entities
(birds, squares etc.) we have

• The thinning factor and the burn-in iteration count

• The update strategy

• If the update strategy is ‘sequential’: the iteration
count

• If the update strategy is ‘random’: the count of
wanted updates for each parameter

• If the model is spatial: the maximum number of
neighbours

Subroutine name: random_init

Description: This subroutine initializes the NAG random number gener-
ator.

Generating: This subroutine is completely static so no information is
needed.

28

Subroutine name: update_all

Description: This subroutine updates each parameter once. It occurs in
the generated program if and only if the user has chosen the
sequential update strategy.

Parameters: The variables found in the model and the structure defining
spatial relationships, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
INTEGER, DIMENSION(300, 5), INTENT(IN) :: spatial
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields are updated
as the next iteration is performed.

2. INTEGER, DIMENSION(...) :: spatial:
On entry: The data structure describing the spatial
relationships

Generating:

• The names of the parameters and whether they are
one-dimensional or two-dimensional

• The loop lengths, that is, how many different entities
(birds, squares etc.) we have

• The proposal strategy (fixed or random walk) for each
parameter

• The formula of the acceptance probability for each
parameter (which variables depend on it and which
parameter depend on it and what distributions define
the dependencies)

• The proposal distributions for each parameter

• If the model is spatial: the maximum number of
neighbours

29

Subroutine name: update_one

Description: This subroutine updates one parameter decided at random.
It occurs in the generated program if and only if the user has
chosen the random update strategy.

Parameters: The variables found in the model and the structure defining
spatial relationships, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
INTEGER, DIMENSION(300, 5), INTENT(IN) :: spatial
Note that the parameters depend on the model in use.
INTEGER :: INTENT(INOUT) :: parameters_achieved

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields are updated
as the next iteration is performed

2. INTEGER, DIMENSION(...) :: spatial:
On entry: The data structure describing the spatial
relationships

3. parameters_achieved:
On entry: The number of the parameters which have
achieved their updates_wanted count
On exit: The number of the parameters which have
achieved their updates_wanted count

Generating:

• The names of the parameters and whether they are
one-dimensional or two-dimensional

• The loop lengths, that is, how many different entities
(birds, squares etc.) we have

• The proposal strategy (fixed or random walk) for each
parameter

• The formula of the acceptance probability for each
parameter (which variables depend on it and which
parameter depend on it and what distributions define
the dependencies)

• The proposal distributions for each parameter

• If the model is spatial: the maximum number of
neighbours

30

7 Generator

The functionality of generator can be divided into following parts:

1. Create the DistributionFactory

2. Use the ComputationalModelParser to read input files

3. Link the objects

4. Generate the data structures and variable definitions

5. Generate the setting of initial values, reading of data and spatial matrix

6. Generate the printing of variables

7. Generate the proposal distribution module

8. Generate the main module

9. Generate the acceptance formulas for variables

With "generate" we mean generating and writing Fortran code using FortranWriter class.

Each part in more detail.

1. Create the DistributionFactory

A DistributionFactory object is created. The parser needs the object to determine which
proposal distribution to set to a variable. DistributionFactory’s constructor reads the user
defined distributions file and constructs an object for each user-defined distribution.

2. Use the ComputationalModelParser to read input files

The model file, which defined variables and structures, is read first one line at a time. If
the line describes a structure, an Entity object will be created. A structure definition ends
with ’}’. Name, file (if any), spatial matrix and some other data are set when an Entity
object is constructed. The object will then be added to a collection. A variable can be
global, or it can belong to an entity. Variables are created the same way as are the entities.
The Parser processes the formula of each variable, creating either a Distribution or an
Equation, accordingly.

Simulation parameters are read next. Global variables thinning, burn-in, etc are set. Pro-
posal distributions are set to each variable. The parses uses DistributionFactory to deter-
mine the right distribution. A new Distribution is then created and added to the variable
in question.

Lastly the data files are processed. All missing values are replaced with ’0’ and the
program checks that each missing value has a value set in the initial values file. The
Parser also writes a missing value matrix for each data file. The lengths of data files are
saved in the related Entity objects. With the information gathered, the Parser creates a
ComputationalModel instance and passes it to the Generator.

31

3. Link the objects

See 10.1.

4. Generate the data structures and variable definitions

The generateDefinitions() method is called. The Entity and Variable objects are examined
and the data structures needed are coded into a Fortran module.

5. Generate the setting of initial values, reading of data and the spatial matrix

The generateInput() method is called. This method calls generateSetInitialValues(), gen-
erateReadData(), generateSetSpatial() which read the initial values, data and spatial ma-
trices.

6. Generate the printing of variables

The generateOutput() method is called. This method calls generateWriteSummary(), and
generateWriteOutput() methods. These methods generate the needed Fortran code for
printing of variables.

7. Generate the proposal distribution module

The generateProposal() method is called. The method generates the proposal distribution
module.

8. Generate the main module

The generateMain() method is called. The method generates the subroutines in the main
program, the initialization of data structures and calls to other modules.

9. Generate the acceptance formulas for variables

This phase is done in the main module generation. The generateMain() method calls ei-
ther generateUpdateAll() or generateUpdateOne() depending on the update strategy used.
The methods code the update of variables. Both methods call the generateAcceptance-
Formula() method, which generates the acceptance formula for a variable.

32

7.1 Operations of Generator

Operation Return type Description
generate() void The method doesn’t generate any code itself.

It calls other generate methods.
generateDefinitions() void This method generates the Fortran module

Definitions and writes it into a source code
file.

generateInput() void This method generates the Fortran module
Input and writes it into a source code file.

generateOutput() void This method generates the Fortran module
Output and writes it into a source code file. It
calls the generateWriteSummary() and gen-
erateWriteOutput() methods.

generateProposal() void This method generates the Fortran module
Proposal and writes it into a source code file.

generateMain() void This method generates the Fortran module
Main and writes it into a source code file.

generateSetInitialValues() String[] The method generates the subroutine
set_initial_values.

generateReadData() String[] The method generates the subroutine
read_data.

generateSetSpatial() String[] The method generates the subroutine
set_spatial.

generateWriteSummary() String[] The method generates the subroutine
write_summary.

generateWriteOutput() String[] The method generates the subroutine
write_output.

generateUpdateAll() String[] The method generates the subroutine up-
date_all.

generateUpdateOne() String[] The method generates the subroutine up-
date_one.

generateAcceptanceFormula
(Variable variable)

String[] The method generates and returns the accep-
tance formula for a given Variable object.

33

8 Data structures

Figure 5: A diagram of the generator class structure.

8.1 Variable

A number of variables are defined in the model file. These variables are represented by
Variable objects. One Variable object describes one variable defined in the file. Equations
and distributions in the model file define dependencies which are used to link the objects.
Some of the fields are filled in after the reading of simulation parameter files, for example
the proposal distribution. Distributions are saved in the Variable objects as Distribution
objects. Equations are saved in the Variable objects as Equation objects. A Variable object
can have either a distribution (stochastic) or an equation (functional). Both options have
their own constructors.

34

8.1.1 Fields of Variable

Field name Type Description
name String The name of the variable.
belongsTo Entity The Entity the variable is associated with, or

Null if it isn’t associated with any entity.
affects LinkedList

<Variable>
Pointers to each Variable which this Variable
affects.

depends LinkedList
<Variable>

Pointers to each Variable of which this Vari-
able depends on.

data boolean True if the variable is data, otherwise False.
column int The column the variable is found in if the

variable is data.
functional boolean True if the variable is functional, False if it’s

stochastical.
equation Equation The equation for the variable if the variable

is functional, otherwise Null.
distribution Distribution The Distribution for the variable if the vari-

able is stochastic, otherwise Null.
proposal Distribution The proposal distribution of the variable.
missingValues int The number of missing values if the variable

is data.
algorithm String The algorithm that is used for updating the

variable. The program will use only one al-
gorithm, so this field is needed only if some-
one expands the program to use other algo-
rithms.

proposalStrategy String The proposal strategy used for the variable.
typeInteger boolean True if the variable is an integer, False if it’s

a double.
updates int The number of minimum updates for the

variable.
printed boolean True if the variable is printed during the sim-

ulation, false otherwise.

35

8.1.2 Operations of Variable

Operation Return type Description
Variable(Entity belongsTo, int
column, boolean data, String
name, distribution Distribution)

- Constructor for a Variable object.

Variable(Entity belongsTo, int
column, boolean data, String
name, Equation equation)

- Constructor for a Variable object.

Variable() - Constructor for a Variable object.
getAffectsList() LinkedList

<Variable>
Returns a list of all Variables which this Vari-
able affects.

addAffected(Variable variable) void Adds a Variable to affects list.
getDependenceList() LinkedList

<Variable>
Returns a list of all Variables which depend
on this Variable.

addDependence(Variable vari-
able)

void Adds a Variable to dependence list.

getAlgorithm() String Returns the algorithm used to update this
Variable.

setAlgorithm(String algorithm) void Sets the algorithm used to update this Vari-
able.

getColumn() int Returns the column of a data file from which
this Variable is found.

setColumn(int column) void Sets the column of a data file from which this
Variable is found.

isData() boolean Returns true if Variable comes from data,
false otherwise.

setData(boolean data) void Sets the attribute describing whether the
Variable comes from data.

getEquation() Equation Returns an Equation object if the Variable is
functional, null is returned otherwise.

setEquation(Equation equation) void Set an Equation object for the Variable is
functional.

getDistribution() Distribution Returns a Distribution object if the Variable
is stochastic, null is returned otherwise.

setDistribution(Distribution dis-
tribution)

void Sets a Distribution object for the Variable.

isFunctional() boolean Returns true if the Variable is functional,
false otherwise.

setFunctional(boolean) boolean Sets the attribute describing whether the
Variable is functional.

getProposal() Distribution Returns Variable’s proposal distribution.
setProposal(Distribution pro-
posal)

void Sets a proposal distribution to the Variable.

getStrategy() String Returns proposal strategy.
setStrategy(String strategy) void Sets a proposal strategy.
getUpdates() int Returns the number of updates.
setUpdates(int updates) void Sets the number of updates.
getMissingValueCount() int Returns the count of missing values in data.
incrementMissingValues() void Increases missing values by one.

36

isInteger() boolean Returns true if the Variable is an integer,
false otherwise.

setType(boolean typeInteger) void Sets the type of the Variable object.
getEntity() Entity Returns the Entity object the Variable be-

longs to or null if the variable is global.
setEntity(Entity entity) void Sets the Entity object the Variable belongs

to.
setPrinted() void Sets the Variable to be printed.
isPrinted() boolean Returns true if the variable needs to be

printed, false otherwise.
isOk() boolean Checks that all necessary fields are set.

8.2 Entity

A number of structures are defined in the model file. A structure can link a number of vari-
ables, defining the indexing and the data file(s) used. An Entity object is constructed for
each structure. Entity objects are used when correct indexing for variables is computed.
The data file names are also saved in the objects.

37

8.2.1 Fields of Entity

Field name Type Description
dataFile String The name of the file where the data related

to the entity is found. Null if the the entity is
not related to data.

isMatrix boolean True if the data is in matrix format, otherwise
false.

name String The name of the Entity.
size int The number of entities of this type.
spatialMatrixFile String The name of the file where the spatial matrix

is found. Null if the entity is not spatial.
variableList LinkedList

<Variable>
The list of Variables related to the Entity.

xCoordinateString String The name of the Entity that the horizontal
dimension in the spatial matrix represents.
Null if the entity is not spatial.

yCoordinateString String The name of the Entity that the vertical
dimension in the spatial matrix represents.
Null if the entity is not spatial.

xCoordinate Entity The Entity that the horizontal dimension in
the spatial matrix represents. Null if the en-
tity is not spatial.

yCoordinate Entity The Entity that the vertical dimension in the
spatial matrix represents. Null if the Entity
is not spatial.

38

8.2.2 Operations of Entity

Operation Return type Description
Entity(String name, String
spatialMatrix, String xCoordi-
nateString, String yCoordinat-
eString)

- Constructor for an Entity object.

Entity() - Constructor for an Entity object.
addVariable(Variable variable) void Adds a Variable object to the variable list.
getVariableList() LinkedList

<Variable>
Returns the variable list.

setName(String name) void Sets the name of the variable.
setSize(int size) void Sets the size of the object. This is the number

of lines in the data file.
getSize() int Returns the size of the object.
getDataFile() String Returns the name of the data file.
isMatrix() boolean Returns true if the Entity combines two other

Entities, and thus is a matrix.
setMatrix(boolean isMatrix) void Sets the isMatrix attribute of the entity.
getSpatialMatrixFile() String Returns the file name of spatial dependency

matrix. Null is returned if there is no matrix.
setSpatialMatrixFile(String spa-
tialMatrixFile)

void Sets the name of the spatial matrix file.

getXCoordinate() Entity Returns the horizontal dimension Entity.
Null is returned if the Entity is not a matrix.

setXCoordinate(Entity XCoor-
dinate)

void Sets the horizontal dimension Entity.

getYCoordinate() Entity Returns the vertical dimension Entity. Null
is returned if the Entity is not a matrix.

setYCoordinate(Entity YCoor-
dinate)

void Sets the vertical dimension Entity.

link(HashMap <String, Entity>
mapper)

void Links the Entity object to other Entity ob-
jects.

39

8.3 ComputationalModel

Figure 6: ComputationalModel and its relationships.

The Parser returns a ComputationalModel object to the generator. The object has all the
needed information to construct a working Fortran program which computes the given
problem.

40

8.3.1 Fields of ComputationalModel

Field name Type Description
iterations int The number of total iterations. This attribute

is valid only if the update strategy is sequen-
tial.

burnIn int The number of iterations the program does
before the printing of variables starts.

thinning int The number of iterations between the print-
ing of variables.

updateStrategy String The update strategy used: sequential or ran-
dom.

variableList LinkedList
<Variable>

A linked list of all global Variable objects.

entityList LinkedList
<Entity>

A linked list of all Entity objects.

entityMapper HashMap
<String,
Entity>

A collection which combines Entity objects
and their names.

variableMapper HashMap
<String,
Variable>

A collection which combines all global Vari-
able objects and their names.

modelFile String The file name of the model description file.

41

8.3.2 Operations of ComputationalModel

Operation Return
type

Description

ComputationalModel(int it-
erations, int burnIn, int thin-
ning, String updateStrategy,
LinkedList <Variable> vari-
ableList, LinkedList <Entity>
entityList, HashMap <String,
Entity> entityMapper, HashMap
<String, Variable> variableMap-
per, String modelFile)

- Constructor for a ComputationalModel ob-
ject.

getIterations() int Returns the total iterations, if specified. If
the update strategy is random, this definition
is not appropriate and this method returns -1.

getBurnIn() int Returns the length of the burn-in period.
getThinning() int Returns the thinning.
getUpdateStrategy() String Returns the update strategy.
getVariableList() LinkedList

<Variable>
Returns the linked list of all global Variable
objects.

getEntityList() LinkedList
<Entity>

Returns the linked list of all Entity objects.

getEntityMapper() HashMap
<String,
Entity>

Returns the HashMap collection which com-
bines all Entity objects and their names.

getVariableMapper() HashMap
<String,
Variable>

Returns the HashMap collection which com-
bines all Variable objects and their names.

getModelFile() String Returns the name of the model description
file.

8.4 Equation

An Equation is constructed for each functional variable. All variables in the functional
variable’s equation and the equation itself are saved in this Equation object.

42

8.4.1 Fields of Equation

Field name Type Description
parameterString String[] An array of all variables in a equation. This

field is used to store the variables before the
linking.

parameters Variable[] An array of all variables in a equation. This
field is used to store the variables after the
linking.

equation String The equation of the object.
startingIndex int[][] Matrix of starting positions of all the vari-

ables in the equation.

8.4.2 Operations of Equation

Operation Return
type

Description

Equation(String equation,
String[] parameterString, int[][]
startingIndexMatrix

- The constructor for Equation.

getEquation() String Returns the equation stored in the Equation.
getParameterString() String[] Returns an array of parameters as String.
setParameters(Variable[] param-
eters)

void Sets the parameters (Variables) used in the
equation.

getParameters() Variable[] Returns the array of parameters.
getStratingIndexMatrix() int[][] Returns the starting index matrix.

43

8.5 Distribution

Figure 7: A diagram of the Distribution structure.

The Distribution is an abstract class that provides a simple interface for accessing dif-
ferent distributions’ proposal generation and frequency functions without knowing their
specifics. Distribution is extended by classes UserDistribution, DiscreteUniformDistri-
bution, BinomialDistribution, PoissonDistribution, ContinuousUniformDistribution and
BetaDistribution.

8.5.1 Fields of Distribution

The fields of Distribution are outlined here.

44

Field name Type Description
numberOfParameters int The number of parameters for the mathemat-

ical function of the distribution.
intParameter int [num-

berOfPa-
rameters]

Contains the parameters of this Distribution
that are fixed integers.

realParameter double
[num-
berOfPa-
rameters]

Contains parameters of this Distribution that
are fixed real numbers.

variableParameter Variable
[num-
berOfPa-
rameters]

Stores the parameters that must be refer-
enced from Variable instances.

parameterType int [num-
berOfPa-
rameters]

Contains a map of the parameter types that is
used to index the different type parameter ar-
rays in correct order. Acceptable values are:
0 = integer, 1 = double, 2 = Variable.

parameterString String
[num-
berOfPa-
rameters]

Contains the raw parsed parameter Strings
that are used to build the links to the actual
parameters according to their names.

8.5.2 Operations of Distribution

This section introduces the operations of Distribution.

45

Operation Return
type

Description

getNumberOfParameters() int returns the value of numberOfParameters.
isInteger(int index) boolean Returns true if the parameter reference at in-

dex is to be an INTEGER in the Program to
be generated, otherwise returns false.

getParameter(int index) Object Returns the parameter at index.
setParameter(int index, int pa-
rameter)

void sets parameter into index of intParameter,
and updates parameterType accordingly.

setParameter(int index, double
parameter)

void sets parameter into index of realParameter,
and updates parameterType accordingly.

setParameter(int index, Variable
parameter)

void sets parameter into index of variablePa-
rameter, and updates parameterType accord-
ingly.

getParameterString(int index) String Returns the parsed parameter String at index
of parameterString

setParameterString(int index,
String parameter)

void Sets the parsed parameter String at index of
parameterString

abstract getIntroduction() String[] Returns the introduction lines necessary for
the distribution modules. This is an EXTER-
NAL definition.

abstract getGenCode(String[]
parameters

String Returns the Fortran call for the proposal gen-
eration subroutine for the distribution as a
String[].

abstract getFreqCode(String[]
parameters)

String
parameters

Returns the Fortran call for the frequency
subroutine for the distribution as a String[].

8.6 DistributionSkeleton

The DistributionSkeleton serves as a collection of information that DistributionFactory
uses for constructing UserDefinedDistribition instances.

46

8.6.1 Fields of DistributionSkeleton

Field name Type Description
numberOfParameters int The number of parameters for the mathemat-

ical function of the distribution.
typeOfParameters boolean

[num-
berOfPa-
rameters]

Contains the types of parameters of this
skeleton of a user-defined distribution. The
value of an index is true if the parameter at
the index in question should be an integer,
otherwise it is false.

hasFreqFunction() boolean true iff the distribution in question has a fre-
quency function, that is the user distributions
file has the header name_freq and such a sub-
routine exists there.

hasGenFunction() boolean true iff the distribution in question has a pro-
posal generation function, that is the user
distributions file has the header name_gen
and such a subroutine exists there. Note that
user generation subroutines are expected to
generate an arrayful of proposals on a single
invocation.

name String Contains the name of the distribution, this
being the first part of the distribution’s
corresponding subroutine names mentioned
above.

8.6.2 Operations of DistributionSkeleton

These operations allow for query of field values, only. Setting the field values is always
done upon creation, see the constructor.

Operation Return
type

Description

DistributionSkeleton (String
name, int numberOfParameters,
boolean[] typeOfParameters,
boolean hasFreqFunction,
boolean hasGenFunction)

- The constructor: creates a new Distribu-
tionSkeleton instance. This will be called
after reading the user-defined distributions
from the user distribution file, once for each
such distribution name.

getName() String Returns the value of name.
getNumberOfParameters() int returns the value of numberOfParameters.
getTypeOfParameters() boolean[] Returns a reference to typeOfParameters
hasFreqFunction() boolean Returns the value of hasFreqFunction
hasGenFunction() boolean Returns the value of hasGenFunction

47

8.7 DistributionFactory

The DistributionFactory stores information about the distributions, both user-defined and
provided. It can be used to match a distribution name to its corresponding Distribution
entity and create an instance of this for the linking of a Variable to other Variables via its
Distribution.

8.7.1 Fields of DistributionFactory

Field name Type Description
userDistributions HashMap

<String,
Distribu-
tionSkele-
ton>

Contains a map of DistributionSkeletons that
can be accessed by the distribution names.

8.7.2 Operations of DistributionFactory

The operations used for acquiring distributions for variables.

Operation Return
type

Description

DistributionFactory (File dis-
tributionFile)

- The constructor: associates the new instance
with a given user-defined distributions file.

getDistribution(String name) Distribution Returns a reference to a newly created Distri-
bution with the given name, by first indexing
the userDistributions and then constructing a
Distribution subclass from the information.

8.8 UserDefinedDistribution

UserDefinedDistribution is a subclass of Distribution. An UserDefinedDistribution object
is constructed for each user given distribution.

8.8.1 Fields of UserDefinedDistribution

UserDefinedDistribution has the same fields as other Distribution class’ subclasses have.
It also has a field for a DistributionSkeleton object.

8.8.2 Operations of UserDefinedDistribution

The UserDefinedDistribution represents a non-standard distribution instance. It differs
from Distribution only with its constructor.

48

Operation Return
type

Description

UserDefinedDistribution (Dis-
tributionSkeleton userDistribu-
tion)

- The constructor: creates a new instance ac-
cording to the information in userDistribu-
tion.

49

9 Modules

This section describes the modules of the Generator, that is the Java classes that are used
to generate the Program to simulate the model in question. The classes are outlined with
their interfaces outside and their summarized internal functionality.

9.1 ComputationalModelParser

The parser is the part of the generator that reads the model and simulation input files, puts
the data into correct places and returns the data structure to the main generator program.

9.1.1 Interface

Operation Return type Description
readModel(String modelFile-
Name, String initialValueFile-
Name, String simulationFile-
Name, String proposalFile-
Name, String updateFileName,
String toOutputFileName, Dis-
tributionFactory factory) throws
IOException, SyntaxException,
MissingFunctionException

ComputationalModel Parses all the files and constructs a Compu-
tationalModel instance with Variables linked
to their Entities, Entities to each other and
Equations and Distributions set for variables.

50

9.1.2 Internal operations

Operation Return type Description
readInitialValues(File file,
HashMap <String, Variable>
variableMapper, File missing-
File)

void Reads the initial values for the variables from
file and assigns them to the correct Variables.
Incorrect file format will cause a SyntaxEx-
ception to be thrown, missing initial values
will cause an error message and stop the pro-
gram execution.

readData(File file, Variable
datavar, File missingFile)

void Reads the data for a single variable
and sets the fields: datavar.missingValues,
datavar.belongsTo.size. Reads out the miss-
ing values and writes the datafile_missing.txt
and creates missingFile to be used by later
methods (readInitialValues). Invalid sym-
bols or uneven line lengths in the data will
generate a SyntaxException.

readProposal(File file, HashMap
<String, Variable> variableMap-
per)

void Reads proposal distributions from file and
assigns them for the correct Variables. Miss-
ing distributions will cause an error message
and stop execution.

readUpdate(File file, String up-
dateStrategy, int iterations)

void Reads the file, parses the update strategy into
updateStrategy and iterations into iterations.
If the update strategy is random, parses each
iterations value into the correct Variable’s
updates field.

readSimulation(File file, int
burnIn, int thinning)

void Reads values from the file into burnIn and
thinning.

readOutput(File file, HashMap
<String, Variable> variableMap-
per)

void Reads the variables to be output from the file
sets variable.setPrinted() for those variables.

9.1.3 Fields filled in by the parser

9.1.3.1 ComputationalModel

51

Field name type
iterations int
burnIn int
thinning int
updateStrategy String
variableList LinkedList <Variable>
entityList LinkedList <Entity>
variableMapper HashMap <String, Variable>
entityMapper HashMap <String, Entity>

9.1.3.2 Entity

Field name Type
data String
isMatrix boolean
name String
size int
spatialMatrix String
variableList LinkedList <Variable>
xCoordinateString String
yCoordinateString String

9.1.3.3 Variable

Field name Type
name String
belongsTo Entity
data boolean
column int
functional boolean
equation Equation
distribution Distribution
proposal Distribution
missingValues int
algorithm String
proposalStrategy String
typeInteger boolean
updates int

52

9.2 FortranWriter

FortranWriter receives lines of Fortran source code and writes them to a file correctly
indented and wrapped to 79 character length.

9.2.1 Interface

Operation Return type Description
FortranWriter(String file-
Name)

- Constructor, specifies which file to write

write(String line) throws IOEx-
ception

void Writes line to the specified file, correctly in-
dented and multilined if longer than 79 char-
acters

write(String[] lines) throws
IOException

Writes lines to the specified file, correctly in-
dented and multilined if longer than 79 char-
acters

9.2.2 Indentation

If one of the following keywords is found on a line, the next line begins an indented
section.

• BLOCK DATA

• DO

• FORALL

• FUNCTION

• IF

• INTERFACE

• MODULE

• PROGRAM

• SELECT CASE

• SUBROUTINE

• TYPE typename

• WHERE

53

If END is found on a line, the previous line was the last line of an indented section.

Keywords that mark both the ending of the previous indented section and the beginning
of another:

• CASE

• CONTAINS

• ELSE

• ELSEWHERE

9.2.3 Line wrapping

If a line is over 79 characters long, it’s cut at the last whitespace found so that it’s no
longer than 77 characters. ‘ &’ is added to the end of the line and the rest of it is moved
to the next line, indented. If the remaining line is too long as well, it receives the same
treatment excluding the indenting of the following line.

54

10 Algorithms

This section describes how the generator data structures can be used when generating the
Fortran program.

10.1 Linking

When the Parser has read the model, it is necessary to link the variables to each other.

The attributes set in this phase are:

• In Entity objects: the XCoordinate and YCoordinate

• In Variable objects: the list depends includes the variables the current variable de-
pends on, that is, the variables that affect the current variable

• In Variable objects: the list affects includes the variables the current variable affects,
that is, the variables that depend on the current variable

• In Distribution objects: the reference parameters of the distribution, that is, the
array variableParameter

• In Equation objects: the parameters of the equation, that is, the array parameters.

Note: We assume that the Parser creates the (unlinked) Distribution objects for all the
stochastic variables. The objects store the names of its parameters as Strings. Similarly
we assume that the Parser creates the (unlinked) Equation objects for all the functional
parameters. The objects store as Strings the names of variables appearing in the equation.

The idea of having this kind of information is that when generating the acceptance proba-
bility calculation for a parameter, the affects and depends lists define which variables are
part of the probability calculation formula. By using the Distribution object we obtain
parameters needed when the distribution is used in the acceptance probability formula.

When the variable is stochastic, the Distribution object already has information of the
variables which affect the current variable, so in that case the depends contains redundant
information but it is used anyway. When the variable is functional, the Equation objects
contains the same information.

The Parser has created the Variable and Entity instances which correspond to the variables
in the model. In this phase no objects need to be created.

10.1.1 Linking the Entity objects

The linking of the Entity objects is done in the Parser.

• Put all Entity objects into a HashMap. The key of an Entity is its name.

55

• Iterate the entityList (the data structure of the model where all the Entities are) to
find the entities of the model

• For each Entity found:

– If the entity doesn’t describe a matrix, do nothing.

– Otherwise check the attributes XCoordinateString and YCoordinateString that
define the corresponding parent entities (x-coordinate and y-coordinate enti-
ties), find the corresponding Entity objects from the HashMap, and link them
to attributes XCoordinate and YCoordinate.

10.1.2 Linking the Variable, Distribution and Equation objects

A Distribution object has its parameters as Strings. An Equation object has the variable
names appearing in it as Strings.

• Put all Variable objects into a HashMap. The key of a variable is its name.

• Iterate the VariableList in ComputationalModel and the VariableList objects in all
the Entities to find all the variables of the model. For each one the attribute func-
tional tells whether the variable is stochastic or functional.

• For each stochastic variable x:

– Get the distribution of the variable as a String

– For each variable name “y” that occurs in the distribution:

– Use the HashMap to find out the corresponding Variable object y

– Add y to the distribution parameter data structure

– Add x to y’s affects-list

– Add y to x’s depends-list

• For each functional parameter x:

– Get the equation of the parameter

– For each variable name “y” that occurs in the equation:

– Use the HashMap to find out the corresponding Variable object y

– Add y to the equation variables data structure

– Add x to y’s affects-list

– Add y to x’s depends-list

56

10.2 Generating the acceptance probability calculation code

This chapter describes how the generator data structures are used when generating the
Fortran code which calculates the acceptance probability for a single parameter.

The following connections between the objects are needed:

• The variables1 on which the current parameter depends

• The distribution which describes the dependency (the name of the distribution and
the order of its parameters)

• The variables which depend on the current parameter

• The distributions which describe the dependencies (the names of the distributions
and the order of their parameters)

• The proposal distribution and the proposal strategy of the current parameter

When these fields are correctly set, it is possible to generate the code which calculates the
acceptance probability.

The basic algorithm for generating the probability calculation code for one variable is:

• Initialize p_acc (an internal variable in the update subroutine describing the accep-
tance probability of the variable being updated) to 1 and generate a proposal

• Considering the current parameter’s distribution...

• generate a subroutine call: the frequency function2 with the parameters defined and
the old value (store the result into a temporary variable)

• generate a subroutine call: the frequency function with the parameters defined and
the new value (store the result into a temporary variable)

• Generate code which divides the latter by the former and multiplies p_acc with it

• Loop through the variables which depend on the current parameter. For each:

– Based on its distribution...

– generate a subroutine call: the frequency function with its parameters includ-
ing the old value of the current variable and the value of the depending
variable (store the result into a temporary variable)

– generate a subroutine call: the frequency function with its parameters includ-
ing the new value of the current variable and the value of the depending
variable (store the result into a temporary variable)

1In this section, the term variable is used when referring to a variable or a parameter and when it’s
irrelevant which one there really is.

2Note that frequency function is used as a mathematical term whereas the result is often calculated by
using a (Fortran) subroutine, not a (Fortran) function.

57

– Generate code which divides the latter by the former and multiplies p_acc with
it

• If the proposal strategy is random walk:

– Generate code which calculates the difference “new value - current value”

– Generate a subroutine call: the density function of the proposal distribution
with its parameters and the opposite number of the difference

– Generate a subroutine call: the density function of the proposal distribution
with its parameters and the difference

– Generate code which divides the former result by the latter result and multi-
plies p_acc with it

• If the proposal strategy is fixed proposal distribution

– Generate a subroutine call: the density function of the proposal distribution
with its parameters and the new value

– Generate a subroutine call: the density function of the proposal distribution
again with its parameters and the old value

– Generate code which divides the former result by the latter result and multi-
plies p_acc with it.

Note: The current value doesn’t affect the next proposed value in any way.

When generating the detailed code for getting the correct values, the following informa-
tion is needed:

• The entity to which the current parameter belongs

• The entities to which the affected variables belong

• The entities to which the affecting variables belong

For each entity the following information is needed:

• The dimension and the size of the entity

• If the entity describes a intersection of two entities, the parent entities (XCoordinate
and YCoordinate)

10.2.1 Indexing

We have the current variable with which we are dealing right now, and which we know
how to index. (For example a_i_j, and we know we have to use a % two_dim(i, j) %
value.) Then we have another variable, which appears in the distribution of the current
variable, but which we don’t know how to index. The other variable may be global,

58

belonging to the same entity as the current variable or belonging to a different entity as
the current variable.

The following cases are possible:

1. The two variables are both global

2. The two variables belong to the same one-dimensional entity

3. The two variables belong to the same two-dimensional entity

4. The affecting variable is global and the current variable belongs to an one-dimensional
entity

5. The affecting variable belongs to an one-dimensional entity and the current variable
belongs to a two-dimensional entity

6. The affecting variable is global and the current variable belongs to a two-dimensional
entity (Note that this can only be done through a functional parameter between
them.)

By using Entity objects it’s possible to find out which case is present.

This is how the previous situations are solved:

1. No special indexing is needed.

2. The same indexing is used for the two variables. For example if we know how to
index a % one_dim(i), we index b % one_dim(i) accordingly.

3. Same as the previous case except that we need two indices, for example a %
two_dim(i, j) and b % two_dim(i, j).

4. No indexing is needed for the global variable and we already know how to index
the current variable.

5. We must use the correct indexing based on the entities of the variables. For exam-
ple: we have a % two_dim(i, j) and an one-dimensional variable b affects it. We
must decide whether we use b % one_dim(i) or b % one_dim(j). If b:s Entity equals
the XCoordinate of a, we use b % one_dim(j) and if b:s Entity equals the YCoordi-
nate of a, we use b % one_dim(i). Note that in Fortran the first coordinate is y, not
x.

6. No special indexing is needed.

Note that in the generated Fortran program a global variable is stored as a one-dimensional
variable with only one unit.

So that’s how we can generate code which gets the values of the needed variables. New
values are acquired the same way except we use % new_value instead of % value, and we
need to keep track which is the variable for which we must use the new value.

59

10.2.2 Loops

When we are generating the probability calculation code for a current variable, we might
need loops, if the current variable affects other variables that belong to a different entity
which has more dimensions than the entity of the current variable.

We assume that the current variable is indexed with % one_dim(1) (if it is global), %
one_dim(i) (if it is one-dimensional) or % two_dim(i, j) (if it is two-dimensional).

The following cases are possible:

1. The affecting variable and the affected variable are both global

2. The affecting variable and the affected variable belong to the same one-dimensional
entity

3. The affecting variable and the affected variable belong to the same two-dimensional
entity

4. The affecting variable is global and the affected variable belongs to an one-dimensional
entity

5. The affecting variable belongs to an one-dimensional entity and the affected vari-
able belongs to a two-dimensional entity

6. The affecting variable is global and the affected variable belongs to a two-dimensional
entity (Note that this can only be done through a functional parameter between
them.)

This is how the previous situations are solved:

1. No loops are needed.

2. No loops are needed.

3. No loops are needed.

4. We need to loop through all the variable instances of the affected variable. For ex-
ample if the global variable a affects all variable b:s related to birds, we must loop
through all the b:s with:

DO i=1, 200
(where 200 is the size of the entity,
for example the number of the birds)
calculate everything, the indexing is:
a % one_dim(1) (global variable)
b % one_dim(i)
END DO

60

5. We need to loop through the variable instances which belong to the two-dimensional
entity, and we need to know which is the current index of the one-dimensional
variable. For example if we have the variable a related to birds and the variable b
related to the intersection of birds and squares, we need to loop through all the b:s
related to the specific bird:

DO j=1, 300
(where 300 is the size of the entity,
for example the number of the squares)
calculate everything, the indexing needed is:
a % one_dim(i)
b % two_dim(i, j) (if a’s Entity is b:s YCoordinate)
or b % two_dim(j, i) (if a’s Entity is b:s XCoordinate)
END DO

6. We need to loop through the variable instances which belong to the two-dimensional
entity. For example if we have the variable a which is global and the variable b
related to the intersection of birds and squares, we need to loop through all the b:s
related to the specific bird:

DO j=1, 300
(where 300 is the size of the entity,
for example the number of the squares)
calculate everything, the indexing needed is:
a % one_dim(1) (global)
b % two_dim(i, j)
END DO

10.2.3 Functional parameters

How the functional parameters are dealt with:

• When a parameter is updated, the functional parameters affected by it are also up-
dated.

• When a new value is generated for a parameter, new values are also calculated for
all the functional parameters which depend on the parameter.

• A variable is considered to affect another variable also when there is a functional
parameter between them.

All needed information related to functional parameters is stored in the Equation object.

61

10.2.4 Generating the function/subroutine calls

Generating the function / subroutine calls is straightforward, when we know the parame-
ters as Strings. We simply call the method getFreqCode in the correct Distribution object,
passing the wanted parameters as Strings.

For example:
getFreqCode(“alpha % one_dim(i)”, “beta % one_dim(j)”, “x % two_dim(i, j)”, “fre-
quency”)

The method generates the corresponding NAG subroutine call, which calls the frequency
function with given parameters and stores the result into the given variable.

62

11 Correspondence between requirements and design

This chapter describes the correspondence between requirements found in SRS document
and design decision found in this document.

Requirement defines the identification and name of the requirement. Priority defines the
priority of the requirement (E = essential, C = conditional, O = optional), Design status
describes whether the requirement is designed and going to be implemented and Chapters
list the chapters of this document related to the particular requirement.

Possible design statuses include:

• Designed: The requirement is going to be supported

• Designed, found in prototype: The requirement is going to be supported and the
prototype already supports it

• Not going to be implemented: The requirement is not going to be supported

11.1 Model requirements

Requirement Priority Design status Chapters
M1: Using models E Designed 4.1
M2: Defining variables
whose values are taken
from data

E Designed 4.1

M3: Defining param-
eters whose values are
not taken from data

E Designed 4.1

M4: Defining depen-
dencies

E Designed 4.1

M5: Equations E Designed 4.1
M6: Defining vari-
able/parameter repeti-
tion structures

E Designed 4.1

M7: Defining spatial
relations

E Designed 4.1

M9: Reading models
from text files

E Designed 4.1

M10: The distributions
used

E Only distributions found in
the NAG library are sup-
ported.

5

M11: Distributions de-
fined by the user

C Designed 4.3, 8.8

M12: Defining distri-
butions

E Designed 4.1

63

11.2 Data requirements

Requirement Priority Design status Chapters
D1: The general data
format

E Designed

D2: Data not available E Designed 9.1
D3: Invalid data E Designed 9.1

11.3 Simulation requirements

Requirement Priority Design status Chapters
S1: The algorithm used E Designed, found in prototype 8.1, 6.1
S2: Choice of algo-
rithm

C Not going to be implemented 8.1

S3: Setting the number
of updates

E Designed (except when re-
lated to blocks), found in pro-
totype

8.1, 6.1

S4: Setting the number
of burn-in iterations

E Designed, found in prototype 4.2.1

S5: Setting the thinning
factor

E Designed, found in prototype 4.2.1

S6: Setting the blocks C Not going to be implemented -
S7: Setting the update
strategy

C Designed, found in prototype 8.1

S8: Setting the weight
of the blocks

O Not going to be implemented -

S9: Setting the pro-
posal strategies for vari-
ables

E Designed, found in prototype 6.1

S10: Proposal distribu-
tions

E Designed, found in prototype 4.2.3, 6.2.1

S11: Setting initial val-
ues

E Designed, found in prototype 4.2.2, 6.2.2

S12: Defining parame-
ters to output

E Designed 4.2.5, 6.2.3

S14: Informing the user
about the progress

E Designed

S15: Soft stop O Not going to be implemented
S16: Parameters in ran-
dom walk

O Not going to be implemented

64

11.4 Output requirements

Requirement Priority Design status Chapters
OP1: Writing output
into a file

E Designed, found in prototype 6.2.3

OP2: Output file names E Designed 4.2.5
OP3: The output E Designed, found in prototype 6.2.3
OP4: Information writ-
ten to output files

E Designed

OP5: Summary of the
simulation

C Designed 6.2.3

OP6: File access check C Not going to be implemented -

11.5 General error conditions

Requirement Priority Design status Chapters
E1: File not found E Designed, found in prototype 6.2.2
E2: Reporting syntax
errors

O Designed 9.1

E3: Reporting semantic
errors

O Not going to be implemented -

11.6 Non-functional requirements

Requirement Priority Design status Chapters
N1: Working on Linux E Designed, found in prototype -
N2: The implementa-
tion language

E Designed, found in prototype 6

N3: Parallel computa-
tion

O Not going to be implemented -

N4: Graphical user in-
terface

O Not going to be implemented -

11.7 General requirements

Requirement Priority Design status Chapters
G1: Adding comments
to definition files

E Designed 4

65

12 References

Rand Definition of Random Fields in Encyclopedia
http://encyclopedia.laborlawtalk.com/Random_fields

Tode04 Pekka Tuominen: Todennäköisyyslaskenta I

Math05 http://mathworld.wolfram.com/

