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Abstract

Metabolic flux analysis — finding out the rates of reactions in metabolic pathways
—is an important problem areas in the study of metabolism. The most accurate
technique for this task today is the use of isotopic tracer experiments, where a
mixture of differently isotope-labeled substrates is fed to a cell and the propa-
gation of the labels is observed from the products and intermediate metabolites,
where possible. We present a generic methodology for solving the fluxes of a
metabolic network. The method differs from most previous approaches by not
making prior assumptions about the topology of the metabolic network. Also,
only very mild assumptions are made about the available measurement data,
for example, positional enrichment and mass isotopomer data can be used side
by side.
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Chapter 1

Introduction

Metabolic flux estimation — the problem of determining intracellular reaction
velocities — is an important problem in metabolic engineering [17], where the goal
is to optimize the production of some metabolite in microbial cells. Knowledge
of the steady-state reaction velocities — the fluxes — along different pathways
is a prerequisite for pathway optimization [12]. Flux estimation has potential
to be an important tool in a wider context of systems biology, for example,
characterizing the physiology of the organism [6] and metabolic reconstruction,
where one aims at reverse engineering the metabolic network of an unfamiliar
organism [10, 3, 4, 1, 15].

Currently the most appealing framework for flux estimation is the use of
isotopic tracer experiments, where one feeds the cell culture with a predefined
mixture of natural and '3C-labeled nutrients. The fate of the *C atoms can be
observed by measuring the isotopomer distributions of metabolic products and
intermediates [16] with NMR [18, 8] or mass spectrometer [2, 20, 5, 11].

The mathematical tools for relating the isotopomer distributions of metabo-
lites to the fluxes have developed over the last decade. On the other hand,
the existing linear programming framework for flux analysis, relying on elemen-
tary balances of chemical compounds, has been extended to isotopomer analysis
[9, 13,17, 7, 19] to analyze key pathways in metabolism. This approach attempts
to solve the fluxes explicitly. However, a rigorous theory of these extensions,
enabling automatic flux estimation given an arbitrary metabolic network, has
been lacking.

On the other hand, an iterative approach to flux estimation have been stud-
ied by Wiechert, Mollney, Isermann, Wurzel and de Graaf [19]. This framework,
to the authors’ knowledge, is the only existing method that is not tied to a
particular metabolic topology. The method for computing the isotopomer dis-
tributions of metabolites based on the guessed flux distribution is particularly
intriguing. However, although the iterative method can propose flux values in
many cases where the direct approach fails, it is not trivial to assess the quality
of the proposed solutions.

In this paper, we propose a generic methodology for flux estimation in a
direct manner, so that the (possibly partial) solution is given in terms of linear
constraints to the flux values, coupled with estimates of the error. The proposed
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2 CHAPTER 1. INTRODUCTION

framework is completely free of topological assumptions; the user can input any
network topology to base the analysis upon.

In addition, we do not make any prior assumptions of the kind and quality
of isotopomer and metabolite data, although the quality of the solution is af-
fected by the data. In particular, we allow any set of linear constraints to the
isotopomer distribution as measurements. Both NMR, and mass spectrometric
data can be used side by side in this framework.

The paper is organized as follows. Chapter 2 presents notation and con-
cepts to be used throughout the article. Also, we review the linear modelling
approach to flux estimation, assuming complete isotopomer information. Chap-
ter 3 presents the mathematical techniques that are used to compute estimates
of isotopomer distributions of products of a reaction from the reactants and
vice versa. The novelty in these techniques is that the isotopomer distributions
of the metabolites need not to be fully determined. In Chapter 4 we present
algorithms to propagate isotopomer information towards metabolic junctions,
using the techniques described in the previous section. In Chapter 5 we discuss
the potential and the limitations of the methodology and point out routes for
improving the framework.



Chapter 2

Preliminaries

2.1 Metabolic networks

A metabolic network is a four-tuple G = (M, M, L, R), where M = {My, ..., Mp}
is a set metabolites, M C M is the set of internal metabolites — metabolites
that are not uptaken nor excreted by the cell, £ = {1, ..., L} is a set of (carbon)
locations, R = {p1,-.-.,pn} is a set of reactions.

In a slight abuse of notation, we associate a metabolite M with the set of its
carbon locations, that is, M = {M(1),...,M(|M|)} C L. Each location l € L
exists in exactly one metabolite M € M.

A reaction pj = (@;, ;) € R consists of a vector &; € Z™ of stoichiometric
coefficients a;j; € Z, denoting the number of molecules of metabolite M; con-
sumed or produced in one reaction event, and a carbon mapping A; : Lj, — Ljp
from the set of reactant locations Lj, = Uq;;<0M; to the set of product locations
Lip= Uaji>0Mi. Metabolites M; with aj; < 0 and aj; > 0 are called reactants
and products of pj, respectively. The mapping A;(l) = I’ denotes that in the
reaction a carbon in location ! of the reactant M > [ is transferred to the loca-
tion I’ of the product M’ 3 I'M : I' € M. The reverse reaction of p = (&, \)
is the pair p~! = (=&, A1), where A~! is the inverse! of \. We will assume
that reactions keep their reactant fragments intact, changes are confined to the
fragment borders. Note that one can always represent a reaction that does not
fulfill the assumption by a sequence of reactions that do.

For reaction pj, the product locations F' C L;, corresponding to a subset of
reactant locations F' C L;, are given by the image F' = X\;(F) = {\;(l)|l € F}
of F. Correspondingly, the reactant locations F' corresponding to a subset of
product locations F are given by the pre-image F = A;l(F') = {A;l(l’)\l’ € F'}
of F'.

A reactant fragment is a set of locations F' C M; that in p; is destined to a
single product My, defined by F = Fj_l(z',i' )= M; N )\j_l(M,-:)). Correspond-
ingly, a product fragment is a set of locations F' C M that originate from a
single reactant M;, defined by F' = F;(i,3") = My 0 X;(M;).

!The assumption that X is invertible, or even a function, is not always valid, e.g. with
symmetric molecules and reactions consuming or producing more than one molecule of the
same metabolite. We treat these cases separately later on.
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Figure 2.1: Carbon mapping for a reaction converting oxaloacetate into puryvate
and carbondioxide.

Example 1 In Figure 2.1 the carbon mapping for a reaction p; converting oz-
aloacetate into pyruvate and carbondiozide is shown. There are four reactant
locations

Lir={0AA(1),0AA(2),0AA(3),0AA(4)} = OAA
all belonging to ozxaloacetate, and four product locations
L;,={C02(1),PYR(1),PYR(2),PYR(3)} = CO U PYR

belonging to carbondioxide and pyruvate.

We have A\(OAA) = L;, since OOA is the sole reactant. The product frag-
ments are F;(OAA,COs) = X\;(OAA) N COy = CO; and F;(OAA,PYR) =
Aj(OAA)NPYR = PYR. The preimages of product locations are )\]71(002) =
{OAA(1)} and \"Y(PYR) = {OAA(2),0AA(3),0AA(4)}. These are reactant
fragments as well since both sets contain indices from exactly one reactant.

The metabolic state of the cell population is described by the triple o =
(G, 7,C), where G is a metabolic network, vector ¥ = [v,...,v,] € R is a
set of reaction velocities in G and C = {C1,...,Cr} is the collection of subsets
C; C Q of carbons occupying location [ € L. A molecule of metabolite M is
then a sequence of carbons u = (cq, ..., c|M|), ci € Cpy()- The set of molecules
composes a metabolite pool Car C Cpz(1) X - -+ X Cpr(|n))- Each carbon in location
M (%) is tied to some molecule p € Cpy.

2.2 Steady-state modelling of metabolic networks

The methods presented in this article are subject to the following assumptions
about the underlying biological system.

(A-1) The reactions draw their reactants independently, uniformly randomly
from the respective pools.

(A-2) The reaction velocities are the same for the whole population and do not
change over time.
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The first assumption implies that the metabolic system is completely mixed so
that the spatial dimensions can be overlooked (i.e. no concentration gradients
exist). In essence, the cell population is viewed as homogenous, the differences
between metabolic states of different cells are averaged out. This assumption
is consistent with the measurement data; that also represents an average of the
cell population.

The second assumption is the so called steady-state assumption. It is a crucial
one for the methods described in this article. The steady state assumption
relieves us from considering the temporal dimension and does away with the
difficult dynamics. The downside of course is that only steady states can be
handled, for example data from batch cultivations is difficult to analyze as such.

Consider now a sequence of metabolic states o(to),o(t1),...,0(tk), o(ti) =
(G, ¥(t;),C(t;)) corresponding to time points tg < --- < t. By assumption (A-
2) we have ¥(tg) = ¥(t1) = - - - = ¥(tg). Furthermore, the assumption indirectly
implies that |Cas(to)| = |Cam(t1)| = |Cam(tr)|, M € M, that is, the sizes of the
metabolite pools remain constant over time. This is because otherwise some
metabolite pools could exhaust as time elapses, which would force the system
to alter some of the reaction rates. The intermediates cannot accumulate inside
the cell either because the obvious physical limitations.

Let us write down this assumption more formally. In a metabolic steady-
state, the following balance is assumed to hold true for all intermediate metabo-
lites M;

n
Z AV = 0, (2.1)
j=1

where v; is the reaction rate of A\; and «;j; is the stoichiometric coefficient of
metabolite M; in the reaction p;.

Balance equations of the above kind can be constructed for every interme-
diate metabolite. For external metabolites, the production or consumption rate
can usually be measured. In that case we get equations like

n
Za]-,-vj = ,3,', (2.2)
j=1

where §; € R is the measured net rate of consumption or production of metabo-
lite M;. Balance equations can be collected into a matrix equation

(a1 -+ a1y o ]| [u] [B]
A’l7 — ai,l . a’i,j e ai,n X vj — ,6] = 18 (23)
| Om,1 " Qmj " Qmpn | | Un | _;Bm_

where there is a column for each reaction and a row for each metabolite. This
equation system is usually under-determined, that is, there usually is more than
one flux vector ¥ that satisfies (2.3). This happens when there exists alternative
routes between a pair of metabolites, that is, one metabolic route can 'mimic’
the other with no net difference in the flows in or out of the metabolic system.
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2.3 Balance equations and perfect isotopomer data

The problem of under-determination of the matrix (2.3) is tackled by using
isotopic tracing experiments. Let us first define some vocabulary by which the
principles of isotope tracing can then be explained.

We assume that the basic set of carbons 2 is divided into two disjoint,
non-empty subsets, the isotopes® 1 and 1%.

We associate with each location a random variable label ¢; : C; — {0,1},
given by

0, ifcel%,
b(c) = . 1
1, ifcelk.
The labeling of a sequence of carbons (cy,...,ck) - This can be, for example, a

metabolite or its fragment — occupying locations F = {F(1),...,F(k)} is the
sequence £p(1)(c1) - - Lr)(ck) € {0, 1}k To denote different labelings of a set
of carbons we use the shorthands °F = JF, where b = by - - - by is the k bits long
the binary representation of number j.

Molecules p = (c1,---,¢|p) and p' = (c'l,...,c"M|) of metabolite M that
have different labelings (i.e. for some location M (i) € M, £pr(;y(ci) # £ni(ci))
are called isotopomers. If for some F' = {M(f1),..., M(fip)} C M, the label-
ings of the corresponding fragments pr = (cy,,. .. ,C'f‘Fl), and plp = (09‘1’ een, c'leI ),
the molecules are called cumulative (F)-isotopomers or (F-)cumomers of M.

The probability of randomly drawing from the pool Cjs a molecule with
labeling b, that is, the event

{ray(c1) =ba} A+ A{lp)(ck) = bx},

is given by

H(c1,- -y cqm) € Curllar(ay(ci) = by, VM(i) € M}|

P{*M} = Cu

The isotopomer distribution of the metabolite is then the vector

ol M|

Iy = [P{°M}, P{!M} ..., PP 1M} € [0, 1]

The isotopomer distribution of a metabolite fragment F = {F(1),... F(|F|)} C
M, also called cumulative isotopomer distribution or cumomer distribution [19],
is defined in analogous manner by

[{(c1,--.,cpum)) € Cumllpy(cj)) = by, Vi, j « F(i) = M(j)}|

P{°F} = Cur

and Iy = [P{°F},P{'F}...,P{2" ~1F}|T ¢ [0,1]2"". In accordance to [19], we
refer to all F-cumomer distributions, where |F| = k, as k-cumomer distribu-
tions.

%We ignore the radioactive %C.
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The term cumulative isotopomer is justified as follows. For a F-cumomer
b =Dy ---bjp of metabolite M, we denote by

U(b) = {a € {0,1}M/|a; = b;¥i,j : M(5) = F(j)}

the set of labelings of M that contain the labeling pattern b within the locations
F. It is easy to see that [/(b)| = 2/M|=IF| for any b. We can write

P{PF} = > P{"M} (2.4)
acl(b)

In other words, the cumomer frequency is a sum of isotopomer frequencies. The
equation is a re-statement of the basic probability theoretic result between a
joint distribution of random variables and the marginal distributions related to
its subsets. Equation (2.4) can be expressed in matrix form as Ir = UZly,
where

1 ifaecl(b)

0 otherwise.

[UFlij=[Urlab = {
Example 2 The isotopomer distribution of alanine (C3NH702) is the vector

T g1q = [P{%Ala}, P{%*'Ala}, ..., P{1%4la}, P{**'Ala}]".

The 1-cumomer distributions of alanine are the following: The Ala(1)-cumomer
distribution is

1 _IP’{OAla(l)}_11110000-]I_

Ala() = Ipfoglq(1)}] " [0 0 0 0 1 1 1 1| Ale~
_ [P{%%ia} + P{%'Ala} + P{*1%4la} + P{*1Ala}
~|P{*%%4la} + P{'**Ala} + P{*°Ala} + P{"'Ala}|’

the Ala(2)-cumomer distribution is

I _ [P{%Ala(2)}]  [P{°%Ala} + P{%'Ala} + P{1%4la} + P{1%1Ala}
Ala(2) = []P’{lAla(2)}] B [P{OlOAla} + P{*"'Ala} + P{*1%la} + ]P’{mAla}] ’

and the Ala(3)-cumomer distribution is

I _ [P{%41a(3)}] _ [P{%%A4la} + P{°04la} + P{1%%Ala} + P{11%4la}
Ala(3) = [IP’{IAla(3)}] - []P’{OOIAla} + P{°""'Ala} + P{'""Ala} + IP’{mAla}] '

The 2-cumomer distributions of alanine are the following

11000000 P{%%4la} + P{%'Ala}
I _|001 10000 , _ P{%%la} + P{*''Ala}
Alal2) = 10 0 0 0 1 1 0 0f A [P{1%4a} + P{10'Ala}|’
000O0O0TO011 P{11047a} + P{!'!Ala}
P{%Ala(1,3)} P{°%4la} + P{**%4la}
I _|P{%4la(1,3)}|  |P{°Ala} + P{%'Ala}
Ala(1,3) = | P{10414(1,3)} P{'%4la} + P{'%4la} | ’
P{11Ala(1,3)} P{10147a} + P{!11Ala}
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P{%Ala(2,3)} P{°%4la} + P{'%4la}

I _|P{%4ia(2,3)}|  |P{°Ala} + P{!0'Ala}
Ala(23) = | P{1041a(2,3)} P{"°Ala} + P{0Ala} |

P{11Ala(2,3)} P{%'4la} + P{'!'Ala}

The Ala(3,3)-cumomer distribution is naturally the isotopomer distribution of
alanine, T g1q.

In order to analyze the data originating from isotope tracing experiments in the
linear programming framework, we make a some further assumptions, namely

(A-5) The system in in an isotopomeric steady-state, that is isotopomer distri-
butions of the metabolites stay approximately constaint over time.

(A-6) The reaction rates are independent of the labeling of the carbons. That
is, we assume that the same reaction rate holds for all isotopomers of the
reactants.

(A-7) The isotopomer distribution of each metabolite is fully determined.
(A-8) The reactions in the network are bijective.

We relax the assumption A-7 in chapter 3; it is the main contribution area of this
report. The assumption A-8 is relaxed in the section 3.4, which makes it possible
to tackle symmetrical metabolites and reactions that consume of product more
than one molecule of the same kind in one reaction event.

Given assumptions A-5 and A-6, for an internal metabolite M;, we can write

n
Z vjajiIP’{iji} = 0, (25)
j=1

for any isotopomer b = by ---byy,,where M;; denotes the metabolites M; en-
tering (aj; > 0) or exiting (aj; < 0) the metabolite pool Cyy; via reaction pj;
if aj; = 0, we take the corresponding isotopomer probabilities as zero as well.
Here, by assumption A-8, o5 ; € {—1,0,1}. The above equation states that the
production and consumption rates need to be equal for each isotopomer indi-
vidually, not just for the metabolite as a whole. The assumption requires care
from the experimental point of view: samples from the metabolic system should
be taken only after the isotopomer distributions have been stabilized. This may
take a considerable time after a metabolic steady-state has been reached.

The balance equations (2.5) for individual isotopomers can be collected into
a system of equations

n
Z vjajillyg, =0, (2.6)
j=1

Assuming that all distributions [s;, are known, (2.6) is a linear equation where
the only unknowns are fluxes v;. Since the isotopomer distributions I57,; depend
on how the reaction — and the pathway upto that point — manipulates the
carbon chain, some of the equations within the system are typically linearly
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independent. Therefore, the system constrains the fluxes around the metabolite
M; more so than the single metabolic balance equation (2.1).

Assuming that [, is measured, and given that I57,; = I, for all consumers
p; of metabolite M; — this holds because all consumers draw their reactants
from the same metabolite pool — we only need to provide distribution estimates
[, for the flows entering the junction at M;; these flows have aj; < 0 in (2.6).
Note that there is no way of measuring those distributions directly: all flows are
inherently mixed. However, as we will see, given the isotopomer distributions of
the reactants we can easily compute the isotopomer distribution of any product
of that reaction

A bijective reaction p = (&, A) defines a one-to-one mapping, the cumomer
mapping

mr - {0,117 {0,132 (2.7)

between the isotopomers of a reactant fragment F' and product fragment F’' =
A(F), defined by 7y p(b) = b’ where b’ =1 -- -be| satisfies: bf, = by if F'(h) =
F(g). The mapping can be convieniently represented in 2' ¥l x 2/ "I permutation
matrix II , defined by

Tyl — {1, if m\ p(b) = b’
o 0, otherwise.

Consider now a reactant fragment F' C M of a reaction p. Its isotopomer
distribution is [z, computed via (2.4) from I5s. Since the reactions are assumed
to defined so that carbons within a reactant fragment F' remain in physical
contact, the frequencies of the F-labeling patterns of M are preserved in the
reaction. In other words, let F/ = A(F) € M’ be the corresponding product
fragment. For any labeling pattern b € {0,1}% it holds that

P{™rP)F"} = P{PF}. (2.8)

Thus, by applying (2.4) and (2.8) to the reactant fragments of a reaction we
obtain isotopomer distributions for all product fragments. This computation is
easily done using the cumomer mapping matrix:

Uty =L =T pllp = I\ pUZEIpr (2.9)

The matrix product (IIy sUr) bears some similarity to the isotopomer mapping
matriz used by Schmidt et al [13], the difference being that their matrix does not
directly produce isotopomer distributions of the fragments. The property (2.9)
will prove useful in Chapter 3 when handling incomplete isotopomer information.

Example 3 Let us eramine the metabolic reaction below, converting two 2-
carbon reactants to a 4-carbon product.
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M(1) M(2) M @D M' Q)

EUER W A 4
M7 (1) M7 (2 M (3) M (4)
The mappings of the carbons are shown by the dashed arrows. Let the iso-
topomer distributions of the reactants be 137 = [0.25,0.25,0.25,0.25]7 and Iy =
[0.5,0.1,0.2,0.2]T.
The two cumomer mapping matrices of the two reactant fragments My and
Ms are

0
0
1
0

_ o O O

=

>

<

Il
oo o~
co=o

The first one is the identity matriz since the ordering of the carbons does not
change, the second flips the isotopomers 01 and 10 around, in accordance to
the carbon mapping. The A(M)- and \(M')- cumomer distributions are then
Ixar) = MxmInr = [0.25,0.25,0.25,0.25]" and Iy(ary = Iy apr I = [0.5,0.2,0.1,0.2]"

It remains to compute the isotopomer distribution of a product given the
isotopomer distributions of the product fragments. This is easily accomplished
by noticing that due to the assumption (A-1), the isotopomer distributions of
the fragments are independent as well.

Thus, the probability of observing a labeling b for F = F' U F" is given by
the product

P{bF} — P{bl I} . ]P’{b” Il}

where the labelings b’ and b” match b:

b — by, if F(i) = F'(k) for some k, and,
)Y, if F(i) = F"(k) for some k.

Let, then, M; be a product of a reaction A, and let Fy,..., Fy, > F, = M;,
be the set of product fragments composing M;. For any labeling by ---by €
{0,1}Ml it holds that

k
Tag(br -~ b)) = [[ 1R (Bps - By ) (2.10)
r=1

where F. = {F.(1),...,F.(|F,|)} satisfies M(fr;,) = Fr(jr) forall 1 < r <k
and 1 <j, < |Fr‘

In other words, the resulting isotopomer distribution for M; is a product
distribution of the constituent fragments. Given a set of reactions producing
M;, by applying (2.4), (2.8) and (2.10) we can compute an estimate of each Iji
in (2.5).
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Example 4 Continuing the previous example, let us compute the isotopomer
distribution of M", using the isotopomer distributions of the product fragments
AM) and \(M'), namely Iyagy = T\ plar = [0.25,0.25,0.25,0.25]7 and Iy =
II) prIar = [0.5,0.2,0.1,0.2]7.

We apply the formula P{PtP2bsPapf"} = P{b1b2)r} . P{b4b3M"Y for each labeling
b € {0,1}*. This gives us the isotopomer frequencies

{00001y = P{%\1} - P{®%M'} = 0.25 - 0.5 = 0.125,
P{%%m"y = P{®M} - P{*'M'} = 0.25 - 0.2 = 0.05, . ...,
P{"100"} = P{*MIP{°M'} = 0.25 - 0.1 = 0.025, and
P{HM"} = P{UMIP{ M’} = 0.25 - 0.2 = 0.05.

In order to solve the fluxes in the metabolic network, an isotopomeric counter-
part of (2.3) is constructed. It has the form

D, V1 z1
Di=| : |[x|:|=]|:]|=2% (2.11)
Dm Un Z_T'n,

where for each metabolite M;, there is a block

dixg 0 dign -0 dinn
Di=| dian - dijn - dipn (2.12)
_di,1,2IMi\ T di,j,2‘Mi| T dz’,n,2|Mz'\_

where dm' = [dz‘,j,l s di,j72|M|]T = ai,j]IAj,Mi- The blocks Zi = [Z,',l s ZZ-,2|M|]T of
the vector Z are defined by

{6, if M; is an intermediate metabolite, and
i =

B;-]I M;, if M; is an external metabolite.

where f; is taken from (2.3). For metabolites that are produced by a single
reaction the blocks D; and Z; consist of one row, exactly corresponding to the
metabolic balance equation (2.1). Solving (2.11) gives us the flux distribution
of the metabolic network, with the exception of pathological cases where some
alternative routes between two metabolites modify the carbon chain exactly the
same way, or the choice of isotope labeling has been particularly unlucky.
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Chapter 3

Flux estimation with incomplete
data

The above presentation assumed that the isotopomer distributions of metabolic
intermediates have been completely measured (assumption A-7). Such an as-
sumption may not be well justified, given the capabilities of current techniques
to chemical analysis of metabolites. In practise, one needs to be able to handle
situations where

e isotopomer data is not available at all for some metabolites, and
e the isotopomer distribution is only partially resolved for some metabolites.

In the following, we develop methdos that — unlike the naive model presented
earlier — takes into account these complications.

3.1 A generalized model of isotopomer measurement

To generalize the approach, we associate with each labeling b of a metabolite
M a vector &, € {0, 1}2|M| that contains Q’s as all other components except the
b’th location. The set of vectors €p, €1, ..., €y nm _; form the standard basis of
the isotopomer space Iy = R2™! of metabolite M.

Assume now that we have partial knowledge about the isotopomer distribu-
tions of metabolites in the form of a system of linear equations

STy =d, (3.1)
where the columns of S = [51,...,5,],5; € R2™' are linearly independent and
d= [d1,da,...,d;] € R" is an arbitrary vector. The columns of S form a basis

for some r-dimensional vector subspace of Zys; each vector §; can be thought of
as a normal of the hyperplane and d; the offset of the hyperplane. As a whole,
(3.1) represents an intersection of 7 such hyperplanes. The projection of all
isotopomer distributions I, that satisfy (3.1) to the space S is d, represented
in the coordinate system S. Furthermore, we can represent each isotopomer
distribution I, that is consistent with (3.1) decomposed as I, = Sd+ S.d,

13
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where the columns of S| span the orthogonal complement S| of the column
space of S and d 1 €& is an arbitrary vector.

The vector space representation unifies many concepts previously used in
analyzing isotopic tracer experiments:

¢ An isotopomer distribution is a point [z1, ...,z M‘]T € Iy satisfying x; >
0, z] ZJ = 1.

e A cumomer distribution related to a fragment F C M lies in a subspace
Up C Ly spanned by the vectors dpy, ..., Upqr|_q, where

’LLF,a = E €p.

{aj=bs, if F(j)=M(:)}

e A mass isotopomer distribution — the relative frequency distribution of
equal mass labelings — lies in the subspace Wy, C Zjs spanned by the vec-
tors wo, W1, - - -, W), Where w; = Zweight(b):i €b, and weight(by ---by) =
>_;bj. Tandem mass spectrometers [2, 5, 11] produce data that, in ad-
dition to the above, also contains mass isotopomer distributions of some
of the fragments, so we get extra basis vectors w; r = Zweight(b):i UFpb-
where b = by -- ‘b is a labeling of the fragment F'.

o Positional labeling enrichment data lie in the subspace Pys C Zps, spanned
by the vectors pi,...,p|y|, where each vector p; = Ebjzl €, denotes the

sum of labeling frequencies where location j contains a 3C' isotope.

So, in general, instead of isotopomer distributions 15, we handle linear iso-
topomer constraints of the form ST1I,; = d (i.e., different linear combinations of
isotopomers as given by S), where matrix S = [} - - - §,] contains basis vectors
spanning some subspace S C Zyy.

Example 5 For alanine, the above-mentioned subspaces are the following

o If S =1Ig, the 8 x 8- identity matriz, (3.1) corresponds to measuring the
isotopomer distribution in its entirety.

o The trivial isotopomer ’measurement’, stating the fact that the relative
isotopomer frequencies sum up to unity, is obtained by selecting the co-
efficient matriz S as

ST =1,...,1].

o The positional enrichment data, indicating the labeling degrees in different
locations is modelled by setting

01010101
sST=10 0110011
0000T1T1T1S1
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e Mass isotopomer distribution (obtained from basic mass spectrometric anal-
ysis of labeled metabolites) is represented by constructing

10000000
gr_[01 101000
00010T1T10
0001000 1

Consider now the system of isotopomer balance equations (2.5)
> vl =0
J

of metabolite M;. By multiplying the above by ST and by denoting I AjS =
STT xj,M;, we immediately get

D vjaigly,s =0, (3.2)
j

illuminating the fact that an isotopomer balance equation that holds true in
the space I/ also holds true in an arbitrary subspace & € Ij;. Thus, if we
have estimates of I; s we can use (3.2) in place of the isotopomeric balance
(2.5). The central theme in this section is, for each metabolite in a metabolic
junction, to define (3.2) using as high-dimensional S as possible. That way, we
aim at maximizing the number of linearly independent equations constraining
the fluxes around the junction.

In the following, we describe methods for obtaining these estimates. First,
in section 3.2 we show how a set of constraints can be inferred to a product
of a reaction given generalized isotopomer measurements (3.1) of the reactants.
Then, in section 3.3, we show how a similar process can be perfomed in backward
direction, inducing sets of constraints to the reactants given measurements of
the products.

3.2 Forward propagation of isotopomer information

Given a generalized isotopomer measurements of a reactants M of a reaction
p = (@, \), we wish to compute as tight as possible constraints to the isotopomer
distribution of a product M’. For this end, we need to generalize the equations
(2.4) and (2.10), whereas (2.8) can, in essence, be applied in its original form.
Let us first construct a generalization of (2.4). Consider a reactant fragment
F C M, for which A(F) = F' C M'. Assume that we have a measurement (3.1)
of the metabolite M. Our intent is to first infer linear constraints of the form

SEIy = dp (3.3)

to the isotopomer distribution of F'. We set the following criteria to the resulting
system of equations:
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(i) First, it must be expressible as a linear combinations of the basis vectors of
U, that is, all columns § of Sy must satisfy 5= Z]- a;ur; where a; € R.
The rationale is that no other carbons than those in F' contribute to the
isotopomer distribution — as induced by the reaction p — of the product
fragment F’ and the product M'.

(ii) Second, the feasible set of vectors of the resulting system should contain
all isotopomer distributions that are in the feasible set of system (3.1),
that is if & satisfies STZ = cz then we should also have S}";.i" = dp. This
is because otherwise we are excluding isotopomer distributions that could
have generated our data.

(iii) Third, the number of linearly independent equations in the system should
maximal.

We claim that the intersection space W = S NUF has the largest dimension,
among subspaces of Z,s that satisfy above criteria. In detail, the best possible
system of equations has the form WI]I M= JF, where 1, ..., w, are orthonor-
mal basis vectors of W and dp = WTZ, is a projection into the space W of the
least-squares solution g = (ST)*d to the equation STZ = d. (Figure 3.1). By
the properties of Moore-Penrose pseudo-inverse (S7)*t of matrix ST, Zps is in
fact the orthogonal projection into S of all least-squares solutions % to ST# = d.
The computation of an intersection of vector spaces is described in Appendix
Al

That (i) is satisfied, follows from the fact that W C Up. The satisfcation of
requirement (ii) is seen from the following (see also Figure 3.1). We can express
any & consistent with ST& = d as a sum of three orthogonal vectors:

Z=Zw+ ZTs+ a'c'ST, (34)

where Zyw € W, &5 = Sd — Zw € SN W+ and Zs, = Z — Sd € S, where W+
and St are orthogonal complements of W and S, respectively.
The projection of & to W is then given by

wowlzs=w. Wlaw+w wlzs+w wlzs,, (3.5)

However, since the vectors s and s both lie in W, they are orthogonal to
every vector in W, especially the basis vectors ,...,w,. Thus the two last
terms zero out. Moreover, as Zw already lies in W, we have

W WTE =2y

for any & consistent with (3.1). The constraint (3.3) is then satisfied by setting
dr = W dw.

The requirement (iii) follows from the fact that the columns of W form a
basis to W, so one cannot construct a larger set of linearly independent equa-
tions.

The constraint (3.3) can be computed by projecting the least-squares solu-
tion to (3.1), namely the vector (ST)Td, to W:

gw =W WLT(ST)*d (3.6)
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Figure 3.1: At top, the column spaces § and U of matrices S = [31, §2] and
Ur = [t1, U2] together with their intersection W = [w;] are depicted. At bot-
tom, the otrhogonal projection of isotopomer distribution Z into W is depicted.
The same projection can be computed directly or via either of the subspaces S
and Up. The set of solutions consistent with W7& = f is shown in grey.
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For an orthonormal S, the same projection is obtained by computing
Fw =W WTSsd

On the other hand, the same projection can be computed incrementally, by
first projecting Z orthogonally to Ur to obtain Fw + Zy where, again, Fy €
Ur — W is orthogonal to Zy, and then projecting the result to W. The first
projection is obtained by

Tw + Fv = Up U | @,
where the columns of U, | = U - diag(|| @pp ||)~' form an orthonormal basis
for Up. The second projection is given by
w =W W (3w + &v) = W W] Up Uf &
Thus we have the equality
W WlUp UL & =W, . WT(ST)*d (3.7)

for any isotopomer distribution Z consistent with (3.1). For orthonormal S the
equality can also be written as

W W Up U & =W, . WTSST& (3.8)
We can apply this to the cumomer mapping (2.9) to get

W WT(ST)Y d=wW WlUp UL Iy =
W W1 Up, diag(|| ipp )" ULy =
W WU, diag(|| dipp )7 13 pUs e = S L, (3.9)

above denoting ST = W, WIUr | diag(|| Grp ||)*1H§:’F. The left-hand side can
be computed from (3.1) and the right-hand side is an isotopomer constraint for
F'.

By the above method, we can compute a constraint to the isotopomer distri-
bution of each product fragment of metabolite M’. To determine a constraint
to the isotopomer distribution of I, as a whole, we still need to combine the
fragment constraints. Let, therefore, F', F"" C M' be two arbitrary product
fragments with constraints S’ I and S"7 Ipn, respectively. Let us compute a
constraint for their union F = F'U F”. This is done by, in a sense, generalizing
the equation (2.10).

Consider the constraints 5 I = y and §"7Ipn = z corresponding to an
arbitrary pair of rows in matrices S’ and S”. The product

yz = (FT1p) (3 1) = O s'wP{PF'}) - O s"wP{*'F"}),
bl bII
by above reasoning, simplifies into

w=yz=Y sys"wP{"FIP{"F"} = sP{°F} = I,

b’ ,b” b
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choosing here b according to (2.3) and denoting s, = s’y - 8"y and w = yz.
Similar constraints can be computed for each pair of rows and collected to
a matrix STl = @. The whole process can be applied iteratively to a union
of product fragments U;. F; and the next unprocessed fragment Fj, 2 < k <1,
finally resulting in a constraint S71 s to the product metabolite M’ = UL _, Fj.

However, the columns of matrix S are not necessarily of unit length. Also,
whether they are linearly independent, we do not know. Hence, to guarantee
that the system conforms to the form of (3.1), a transformation should be made
to ensure that (see Appendix A.2).

The procedure described above can be used to compute a constraint to the
isotopomer distribution of a product M of any reaction A, given any linear con-
straints to the distributions of the reactants. In particular, the absense of a
measurement can be tolerated, this will be treated as a trivial isotopomer mea-
surement. Moreover, the approach can be applied iteratively to a unbranched
pathway A = {A1,..., A} of reactions (see section ?7).

3.3 Backward propagation of isotopomer information

In the complete information case (section 2.3), to analyze the fluxes around
a metabolite M, we only needed to provide estimates of the flows producing
the metabolite. The isotopomer distribution of metabolite M itself, and thus
the distributions of the flows consuming the metabolite, were assumed to be
measured. In the general case, however, it may be that the isotopomer distri-
bution M is not measured, or a very weak measurement STl = d is given
(i.e. the rank of S is low), we may want to obtain a better estimate using the
measurements of the products.

Assume now that M is consumed by a reaction p. Let F C M be a reactant
fragment induced by p, and let F' = A\(F') C M’ be the corresponding fragment
in the product M’. Let us further assume that we have at our disposal an
isotopomer measurement

STy =d
of M'. Exactly like in forward propagation, using (3.6), we can compute the
projection of the measurement to the intersection space W' = &' NUp as

Fyr = WiWT(ST) ',
and also as

Twr = W WIUp Uf | &
where Z is any isotopomer distribution consistent with $'7# = d. Applying this
to the cumomer mapping (2.9) gives
W wT(SsTyrd =wiwTUp Uk Iy =
WIWTUp DRt UE Ly =
W\ WTUp | DRIy pUELY
= STIp, (3.10)
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denoting above S = (W W{l'Up | diag(|| @pp ||)" I\ )T and Dp = diag(||
UF’,O ||a ) ” ﬁF’,zF' ||)

The procedure in (3.10) is in essence the inverse of (3.9), starting now from
products instead of reactants and applying the inverse of the cumomer mapping.
However, the approach used in the previous section of multiplying the fragment
constraints to get their product distribution does not work. We illustrate this
with a simple example.

Example 6 Let My = {M;(1), M1(2)} be two carbon metabolite and let p =
(@, A) be a reaction taking My as reactant and producing two products, My =
{M2(1)} and M3 = {Ms(1)}. The mapping A induces two reactant fragments
M;i(1) and M1(2). The corresponding product fragments are A(M1(1)) = My(1)

Assume that the isotopomer distributions of Ms and M3 are uniform, that
is,

Tas, = Tag, = [0.5,0.5)7T. (3.11)
Consider the isotopomer distributions of My that could result in such distribu-
tions in the products.

In forward propagation we assumed fragments combining independently. Us-
ing that reasoning we would get P{**®2M;} = P{"'M;(1)} - P{*2M;(2)}, for each
labeling biby € {0,1}2. The resulting distribution in this case would then be
Ty, = [0.25,0.25,0.25,0.25]7, that obviously satsifies the marginals (3.11).

However, the distributions I, = [0.5,0,0,0.5] and I, = [0,0.5,0,0.5] also
have marginals that satisfy (3.11).

Hence, only when there is some quarantee that s is a product distribution —
for example, that all metabolic paths leading to M have detached the carbons
in different fragments in some point, or the carbons in the fragments originate
from different substrate metabolites — one can use the analogous computation
as in the forward propagation. We leave exploration of this thread as further
work.

In the general case, in fact, no more can be said about the distribution Iy,
than the fact that the the reactant fragments have to satisfy the very same
constraints that hold in the product fragments. Let Fi, ..., Fy compose the set
of reactant fragments of a reaction p consuming M. By the above backward
propagation procedure, we obtain a constrain S} Ips = d; corresponding to each
F;. These constraints can be grouped into a common matrix equation:

oLy = (51,82, Sl Ty = [df ..., di 1" = dp

Moreover, in case there are more than one consumer of M, the constraints
obtained for each consumer p1, ..., p; can be grouped as well: we have

ST 1y = du,

where we denote Sy =[Sy, M, ---,Sp,m] and L = [J%,M, e ,d_lq);’M]T. Note
that the columns of Sjs are not generally linearly independent, so the rank of
the system is typically not as high as the number of constraints would suggest.
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3.4 Handling non-bijective reactions

The above presentation assumed that the atom mappings of the reactions are
bijective. Not all reactions are of this kind, however. In the following we deal
with to kinds of non-bijective reactions, namely,

e reactions involving symmetric reactants or products, and

e reactions producing or consuming more than one copy of some metabolite.

(De)polymerization reactions are a typical example of reactions of this
kind.

3.4.1 Symmetrical metabolites

From the perspective of isotopomer analysis of metabolites, symmetry in molecules
manifests in symmetry of the isotopomer distribution: if the molecule has 2
symmetrical orientations, there are labeling pairs that always have equal fre-
quency. For example, the isotopomer distribution of ethane (CH3 — CH3)
always satisfies I gthane(01) = Lpthane(10). In general, if there are k£ symmetrical
orientations, such equivalence sets of equal frequency have maximum size k. For
some labelings; e.g. Igthane(00) and Igipane(11), the equivalence set may be
a singleton. We denote the symmetry equivalence set of labeling b as Ey(b).
Note that for any b’ € Eps(b) Ep(b) = Ep(b’).For ethane the equivalence sets
are Egthane(00) = {00}, Egthane(01) = Egthane(10) = {01,10}, Eptnane(11) =
{11}.

To handle the symmetry of k-symmetrical metabolite M, we introduce a
symmetry matrix IIS¥mmM ¢ R2M 2™ 412t contains a row and a column for
each labeling. The entries of the matrix are defined by

symmm _ )1/ Er(brr(9)l, if bar(5) € Ene(ba(i)), and
I 0, otherwise.

Pre-multiplication of a non-symmetrical vector de Zpr by the symmetry ma-
trix II9ymmM  produces a vector d = TISymm.M § where each equivalence set has
uniform distribution. Intuitively, one can think of this multiplication as mea-
suring the isotopomer distribution of the molecule in every possible symmetrical
orientation, summing up the measurements and normalizing to a frequency dis-
tribution. The reader can verify that if the distribution already is symmetrical
(with respect to equivalence sets Ejs(b), multiplication.

The approach taken by us is to ensure before backward or forward propa-
gation the symmetry of the constraint that is to be propagated. Let M be a
symmetrical metabolite and let ST, = d be the constraint propagated to M,
either forward or backward. The multiplication STIISymm.M], — d makes the
constraint symmetrical. So the constraint that is to be propagated forward or
backward from M, is $TT; = d, where § = (IISymmM)T g,
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Non-symmetrical Symmetrical Symmetrical

Symmetrical Symmetrical Non-symmetrical

Figure 3.2: Symmetry transitions in reactions.

3.4.2 Reactions with non-disjoint reactant or product locations

Reactions that consume or produce more than one copy of the same metabolite
are another class of non-bijective reactions. In such reactions, there are one
or more carbon locations that are images or pre-images of more than one lo-
cation. We call such locations non-disjoint, since, the carbon mapping cannot
distinguish these locations from each other.

We start by converting a such reaction A to a bijective one A’ by introducing
special shadow metabolites for every metabolite that takes part in the reaction
with a coefficient different from 1. The shadow metabolites related to a single
metabolite together with the associated coefficients are called a shadow set. The
shadow set of a disjoint reactant is a singleton.

Example 7 Let A be a non-bijective reaction consuming two (non-symmetrical)
metabolites My and My and producing two molecules of the same metabolite M3.
The bijective reaction X' is then a reaction consuming My and Ms and producing
a pair of shadow molecules M3 and My .

The propagation of isotopomer information is performed with the bijective
reaction followed by post-processing taking into account the underlying non-
disjointness of the reactant or product locations.

Forward propagation

The forward propagation procedure is the following:

1. Convert the reactants and products of A to a disjoint set by introduction
of shadow metabolites. Denote the bijective atom mapping as \'.
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2. Copy the isotopomer constraint STI,; = d of each non-disjoint reactant
to the members of its shadow set {M,1,..., M, 1}

3. Perform normal forward propagation over the reaction A’ to obtain a con-
straint S};H m' = djr to each shadow metabolite of each product M’.

4. For each product M’, process the constraints of the shadow set as follows:

(a) Compute the intersection of column spaces of the coefficient matrices
Sir,...,Sg. Let the columns of S; compose an orthonormal basis of
the intersection space.

(b) Project the vectors Jy, e ,J}c/ to the intersection space to obtain a
constraint S;‘CI,H v = fjr for each member of the shadow set.

(c) Compute an average of the constraints:

1 1 - o
S%—'JI]IMl = EZS%}I]IMI - nyJl = dMI
J J'

to obtain a constraint for M’.

To understand step (4), note that each shadow metabolite represents a quo-
tient of the metabolite pool. The relationship between isotopomer distribution
of the metabolite pool as a whole and the isotopomer distributions of the shadow
pools is given by the equation

For any vector § € Ty, the following holds:
k
T _ T
S ]IMI = ZS ]IM.;,h
h=1

Thus, if sT1 M, ;, = dp is known for each h, the constraints can be averaged. This
calls for computation of a set of vectors § for which dp’s can be determined. It
should be clear that any basis of the intersection space § = §1N- - -NSy, contains
such vectors. Moreover, it is a maximal-sized linearly independent set of such
vectors.

Backward propagation

Backward propagation is somewhat more complicated. To see the problem,
consider reaction of example (7)

Example 8 Let the product fragments be the following F\(Mi, M3) = {Ms (1), M3 (2)},
Fy(My, M3) = {Mz(3)}, Fa(My, Mg) = {M3zn (1)}, Fx(Mz, M) = { My (2), M3 (3)}.
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Consider now the location M3(2). Half of the carbons in the location orig-
inate from metabolite My and the other half from Msy. The (3,1)-cumomer
distribution of Ms satisfies

2032 = L(319) + I(3r2) = L(1,2) + L(2,2)-

Thus, from 132 we do not obtain constraints for Lnr, and I, separately.

On the other hand the carbons on location (3,1) always originate from metabo-
lite M1, either from the location (1,1) or (1,3). Thus we have the following
relationship

203,10 = L3y + I(zr1y = Lig,1) + Lia,3),

which gives us the constraint 1/211(1,1) + 1/2]1(173) = [(3,1) for the isotopomer
distribution of My. The (3, 3)-cumomers induce a similar constraint to [yy,.

The outline of the backward propagation procedure is the following. Assume
a constraint S%;[,]I M= d, m, where for simplicity S is assumed orthonormal and
the eqaution system consistent (see Appendix A.2 how to achieve that), as the
starting point:

1. Convert the reactants and products of A to a disjoint set by introduction
of shadow metabolites. Denote the bijective atom mapping as \'.

2. For each disjoint product, perform normal backward propagation over \'.

3. For a non-disjoint product M’, find out the set of locations F’ C M’ that

in each shadow product M’ s M ! .o originate from the same shadow

reactant M, ;2 F] = {M'(j)|j € Jl} where J; = {)\’_I(M;h(j)) € Mg y|1 <
h < k'}. Denote the corresponding shadow fragments by Fj 1,..., Fs pr.

4. Compute the vector space intersection V' = &' N U

5. Utilizing the relationship Iy = % >l M, write down the constraint in
the intersection space as ’

1 -
YITSM/SJII\;I/HMI == y ZYITSM’S]’I\TJ’]IMS,},’ == YITSMldM’
h

6. Apply the projection equality (3.8) to each term of the sum to obtain
k’

1

P Y’TUF/ LUF, i, =Y Sayrdy

7. Apply the cumomer mapping (2.9) to each term in the sum to obtain the
equation

k
1 IT -1 T T 7 7
Saile = 5 Z Ur, D Ma-i(rt Y UR, T,y = Y7 Sudy = du,
=1
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8. For each reactant, process its shadow set by collecting the constraints
Sg:l]l M,,; = dum,, into a common system

-

Sylar = [Ss1,-- - Sspl I = [doy, ..., 5k = dur.

Note that due to the computation of the intersection of the fragments, we
may lose information: locations where carbons originate from more than one
source metabolite are not inculuded in the fragments. Note however, that in
many cases there is only one source metabolite. In that case, no carbon locations
are excluded; the only weakness over a bijective reaction is that the isotopomer
distribution is less spiky due to the summation over the shadow sets.
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Chapter 4

An algorithm for flux estimation

To maximize our possibilities in estimating the fluxes, we would like to prop-
agate as many as possible independent linear constraints to the isotopomer
distributions of the flows meeting in each metabolic junction.

The techniques described in previous sections enable us to compute linear
constraints to the isotopomer distirbution of products of a reaction given similar
constraints to the reactants, and vice versa.

We can extend these operations to pathways in straight-forward way, as the
following exmaple suggests.

Example 9 Let us consider the pathway of two reactions below

Mg M7

In addition let the atom mappings be such that for each reactant -product pair
(M, M') of reaction X € {\1, A2}, Fx(M,M") # 0.

First, let us consider computing constraints to the isotopomer distribution
I a,, assuming that we possess constraints to the isotopomer distributions I, Iz,
and Lpz,.

The distribution Ly, depends on the distributions Iy, and Iar,. The distri-
bution Ly, on the other hand, depends on the distributions Lps, and Lpz,. Thus,
we need to first compute constraints to Lz, by propagating forward from Ly, and
I, and then, to propagate forward the information from lp, and L, using
the above propagation result.

27



28 CHAPTER 4. AN ALGORITHM FOR FLUX ESTIMATION

Note that the above procedure can be used even if we already had some mea-
surement constraining Lpr,: we just combine the propagation result to the ex-
isting measurement to obtain combined — hopefully tighter — constraints to the
distribution.

Backward propagation generalizes to simple pathways exactly as easily:

Example 10 Let us consider the pathway of the previous example. Assume
that our goal is to compute constraints to the isotopomer distribution Lps,. It is
obviously dependent on Iy, and Ips,. The distribution Iy, on the other hand,
depends on Ly, and Lpr,. So, to compute constraints to 1ps,, we first propagate
backward information form I, and Iy, to constrain Iar,. Then we propagate
backward to I pr, from I agy and Lpy,, first combining with the measured constraints

to Iy, if any.

4.1 Utilizable sub-pathways in forward and backward
propagation

In order to constrain the isotopomer distributions of metabolites as well as
possible, in forward (backward) propagation we would like to utilize as many
upstream (downstream) metabolites as possible. Which metabolites then can
be used? Let the reactions A = {A1,..., A} and metabolites {My, ..., My}
compose a pathway so that Mj; is the product of \; and a reactant of Ajy1.
Let us denote by Fj(My, M) the locations within M that are mapped from
reactant My by A

Clearly, if for each M; there are no producers other than A;, the Fa (Mo, My,)-
cumomer distribution can be computed iterative forward propagation starting
from My. However, if there are two or more producers of some Mj, j > 0, the
distribution I 5z, only constributes to a fraction of the metabolite pool Cy. The
size of the fraction is decided by the fluxes of the different producers of Mj.

Hence, the maximal sized-pathway that can be utilized is defined as {A\p11, .. .
where h = maxfzo{ j|M; has two or more producers} Note that, if M} has two
or more producers, the above pathway is empty. In other words, the are no
upstream metabolites that can be used to constrain I ,y,.

Considering backward propagation to My, then, we see that if there are
no backward junctions among the metabolites My, ..., My, iterative backward
propagation starting from Mj, can be used to obtain a constraint for I5z,. How-
ever, if Mj;,j > 0 has two or more producers, its isotopomer distribution and
that of the downstream metabolites M1, ..., M} only explain a fraction of the
distribution I ,4,, the size of this fraction being dependent on the fluzes again.
So, in an analogy to forward propagation, we define the utilizable pathway as
{AM,---3 Ap—1} where h = min;?:l{ﬂMj has two or more producers} Note that
if M1 has two producers, then the utilizable pathway is empty.

7)\k}
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4.2 The backward propagation algorithm

Let Mp denote the set of metabolites that have to or more producers (the
backward junctions), Mg denote external reactants and Mp denote the exter-
nal products. The pseudocode of the bachward propagation algorithm is the
following.

begin
Awork = @;
M'work = MP >
for each M € Mg do
for each product edge e = (\, M) of M do
Set trivial isotopomer constraint for e and mark e ready;
if all product edges of A are ready then
Put A into Ayork;
od
od
while Myorg 7é 0 orAyor 7& 0 do
for each M € M,ori do
Compute constraint for I, from its reactant edges
(M, ) and the measurement for I, if any;
IfM ¢ MpUMpg then
Propagate backward the isotopomer constraint from
M to the (only) product edge e = (A, M) and mark e ready;
if all product edges of A are ready then
Put A into Ayork;
od
Remove M from Myork;
for each A € Ayori do
Propagate the constraints from the product edges e = (A, M)
to the reactant edges €' = (M’ A)of \;
Mark the reactant edges e’ ready;
for each reactant edge e = (M, \) do
if all reactant edges of M are ready then
Put M into Myork;
od
Remove A from Ayork;
od
od
end
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4.3 The forward propagation algorithm

Forward propagation starts from the expternal reactants and backward junc-
tions of the network and push isotopomer constraints towards the product edges
leading to backward branched junctions and external metabolites. Note that ap-
plying forward propagation after backward propagation is crucial.

begin
Awork = 0;
Muyork = Mg U MBp;
while Mo # 0 orAyorr # 0 do
for each M € M,orr do
Obtain a constraint for I, from the measurement, if any, for it, and,
if M ¢ Mp the product edge (A, M), if any.
for each reactant edge e = (M, \) do
Propagate forward the isotopomer constraint from
M to e and mark e ready;
if all reactant edges e = (M, A) of \ are ready then
Put A into Ayork;
od
Remove M from M ork;
od
for each A € Ao do
Propagate the constraints from the reactant edges e = (M, A)
to the product edges €' = (A, M")of A;
Mark the product edges €' ready;
for each product edge e’ = (A, M') do
if M' ¢ MpU Mp then
Put M’ into M york;
od
Remove A from Ayork;
od
od
end



Chapter 5

Discussion

The presented framework for flux estimation fullfills several important criteria
of a tool that is intended for biochemical engineers and biologists:

e The system is designed to tackle any network topology that is given to
it for the basis of analysis. So the mathematics does not need to be
changed whenever a new organism with a topology different from before
is encountered.

e The system uses the data that is available, with no prior assumption of
completeness. For example, if metabolic intermediates are not measured,
the system still estimates the fluxes as far as possible. Moreover, both
NMR and mass spectroscopic data can be used seamlessly side by side.

e In situations where there is no unique point-solution to the problem or
the system could not find one, the system outputs the feasible (in its
view) solution set as a whole, instead of one solution from that set. More-
over, outputs the error, ’lack-of-fit’ between the experimental data and
the fluxes, which can be used as a basis for, for exmaple, revising the
topological assumptions.

The framework is by no means perfect in its presented form. Several areas
of improvement can be distinguished:

e Compartments. The current system works in the ’bag-of-enzymes’ model,
which ignores any membranes separating metabolic pools. Taking the
compartments into account is certainly possible. However, we expect flux
estimation to be more involved in that case.

¢ Bidirectional reactions. In the current version, bi-directional reactions
conceptually induce metabolic junctions in the network, hence requiring
the measurement of all reactants and products of the reaction in order
to compute the exchange flux. We believe that this can be done more
cleverly so that the measurement requirements are not as great.

o White-areas of the network, places where no isotopomer information is
available for propagation towards a junction, present a problem for anal-
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ysis. This is mostly due to the linear programming framework which dic-
tates that balance equations need to be constructed junction-per-junction
basis. Using higher-order balance equations could enable us to analyze
larger subnetworks than one-junction systems.

In any case, we believe that the presented framework shows that using direct
flux estimation in place of the current iterative methods, has potential of which
only a part has been explored.
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Appendix A

Matrix algebra

A.1 Computing a basis for the intersection of vector

spaces
Let 81,82 C S be two vector subspaces with orthonormal bases {#11, ..., U1}
and {1, ..., Usm }, respectively. We need to find a set of vectors y, ..., Wpn
satisfying

e w; € S; and w; € S for all j,
e the set of vectors is linearly indepenent, and
e the set has maximal size

!
A feasible vector satisfies w = )7, a;ii1; for some o, ..., 0p and @ = >, Bsily;
for some (i, ..., B meaning that

r r!
Z oyl — Z Bit1; =0 (A1)
i=1 i=1
which can be stated in matrix form as
oL L. . a
[UhUs)e = [tns, . . ., Up, Ua1, - - - , Uzp] _gz| =0

The vectors ¢ consistent with the above system make up the null space of
U. Let thus the columns of the matrix

- L. @ -..ooa] A
C_[61"”7Ck]_|:b1 bk:|_|:B:|
define a basis for the null space of U. For any j, the vector ¥; = U1d; = Ugl_;

satisfies (A.1) and thus lies in the intersection space. Moreover, any vector @
in the intersection space must satisfy w = U1Ad = UQBd for some d € R¥. Tt
follows that the columns of the matrix S’ = U; A = —U,B span the intersection
space 81 N'Ss. A basis for the intersection space is finally obtained by selecting
a set of linearly independent columns from S’ spanning the same space.
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A.2 Computing a linearly independent equation sys-
tem consistent with the least-squares solution

Let us consider the system of linear equations
ATg =7 (A.2)

where the columns of A may be linearly dependent and hence the system (A.2)
may be inconsistent. Our goal is to transform the system into another system

sTe=d (A.3)

where S has linearly independent columns — thus the system is consistent — and
the solution to (A.3) is a least-squares solution to (A.2).

Let the columns of U form an orthonormal basis for the column space of
A and let the columns of U, form an orthonormal basis for the orthogonal
complement of A’s column space. Now all least-squares solutions to (A.2) can
be expressed as

where d is a fixed vector and d. 1 is arbitrary. Let #7 ¢ be the vector that is
closest to origin, that is, d_j‘_ = 0. Now we have

. UT.’EES _|d
o [ ]

which gives us d=U T:E'z g- Since the projection of all vectors £1s to A’s column
space needs to be g, the solution we want is obtained by substituting S = U
and d = UT#} .

T1g can be computed by the pseudo-inverse function pinv of Matlab.



