Algorithms in Genome Analysis, Spring 2023

Veli Mäkinen

Week 5

Hidden Markov Models (HMMs)

Max probable path $=$ segmentation into coding and non-coding regions

CACCGCTGCCGAAATTCTATGGTTAGTACTGTCATGATCTTCCGAGTCCGAATCAGA

HMM

- Directed graph with set H of hidden states emitting symbols and set T of transitions
- Emission probabilities $p(c \mid h)$ in state h sum to 1
- Transition probabilities $p(h \mid h \prime)$ to exit state h' sum to 1
- Unique source (no transitions in) and sink (no transitions out)
- Given an input sequence, what is the most probable path from source to sink?
- Many other interesting questions to be studied under this framework

Viterbi

- Dynamic programming algorithm solving the most probable path problem
- $v(i, h)=$ max probability of a path emitting S[1..i] so that $\mathrm{S}[i]$ is emitted at state h
- $v(i, h)=p(S[i] \mid h) * \max _{\left(h^{\prime}, h\right) \in T} v\left(i-1, h^{\prime}\right) * p\left(h \mid h^{\prime}\right)$
- Initialization $v(0$, start $)=1$
- Finalization

$$
v(|S|+1, \text { end })=\max _{(h, \text { nd } d) \in T} v(|S|, h) * p(\text { end } \mid h)
$$ Most probable path can be traced back from $v(|S|+1$, end $)$

- For numerical accuracy, log probabilities are used so that all multiplications become summations

Training

- With labeled training data one can use the observed frequencies to fix the emission and transition probabilities
- Without labels, common ways to proceed are
- Viterbi training: Set initial probabilities based on background knowledge, find a most probable path P for input sequence S, label S according to P and use this as labeled data. Iterate.
- Expectation maximation (EM): As above, but take all paths into account in proportion to their probabilities, calculating expected probability for each emission / transition. Iterate.

EM through Baum-Welsch 1/2

- Uses forward-backward variant of viterbi to find EM estimates
- $\mathrm{f}(i, h)=$ sum of probabilities of a paths emitting $\mathrm{S}[1 . . \mathrm{i}]$ so that $\mathrm{S}[i]$ is emitted at state h
- $\mathrm{f}(i, h)=p(S[i] \mid h) * \sum_{\left(h^{\prime}, h\right) \in T} f\left(i-1, h^{\prime}\right) * p\left(h \mid h^{\prime}\right)$
- $\mathrm{b}(i, h)=$ sum of probabilities of a paths emitting $\mathrm{S}[\mathrm{i} . .|\mathrm{S}|]$ so that $\mathrm{S}[i]$ is emitted at state h
- $\mathrm{b}(i, h)=p(S[i] \mid h) * \sum_{\left(h, h^{\prime}\right) \in T} b\left(i+1, h^{\prime}\right) * p\left(h^{\prime} \mid h\right)$
- Initialization: $\mathrm{f}(0$, start $)=b(|S|+1$, end $)=1$
- Finalization:
- $\mathrm{f}(|S|+1$, end $)=\sum_{(h, \text { end }) \in T} f(|S|, h) * p($ end $\mid h)$
- $\mathrm{b}(0$, start $)=\sum_{(\text {start }, h) \in T} b(1, h) * p(h \mid$ start $)$

EM through Baum-Welch 2/2

- Note: $\mathrm{f}(|S|+1$, end $)=b(0$, start $)$ is the total probability of emitting S
- The total probability $T(h, i)$ of emitting $S[i]$ at state h is

$$
\sum_{\left(h^{\prime}, h\right) \in T} f\left(i-1, h^{\prime}\right) * p\left(h \mid h^{\prime}\right) * b(i, h)
$$

- Expected emission count $\mathrm{EC}(\mathrm{h}, \mathrm{c})$ of seeing c being emitted at state h is thus

$$
\frac{\sum_{\{i: S[i]=c\}} \mathrm{T}(h, i)}{f(|S|+1, e n d)}
$$

- One can then set $p(c \mid h)=\frac{E C(h, c)}{\Sigma_{\left\{c^{\prime} \in \Sigma\right\}}{ }^{E C\left(h, c^{\prime}\right)}}$
- Derivation for $p\left(h \mid h^{\prime}\right)$ is left as an exercise

