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Abstract

Many popular computer games feature conflict between a human-controlled player character and mul-
tiple computer-controlled opponents. Computer games often overlook the fact that the cooperation
between the computer controlled opponents needs not to be perfect: in fact, they seem more realistic
if each of them pursues its own goals and the possible cooperation only emerges from this fact. Game
theory is an established science studying cooperation and conflict between rational agents. We provide
a way to use classic game theoretic methods to create a plausible group artificial intelligence (AI) for
action games. We also present results concerning the feasibility of calculating the group action choice.

1 Introduction

Most action games have non-player characters
(NPCs). They are computer-controlled agents which
oppose or help the human-controlled player charac-
ter (PC). Many popular action games include combat
between the PC and a NPC group. Each NPC has
an AI, which makes it act in the game setting in a
more or less plausible way. The NPCs must appear
intelligent, because the human player needs to retain
the illusion of game world reality. If the NPCs act
in a non-intelligent way, the human player’s suspen-
sion of disbelief might break, which in turn makes
the game less enjoyable. The challenge is twofold:
how to make the NPCs act individually rationally and
still make the NPC group dynamics plausible and ef-
ficient?

Even though the computer game AI has advanced
much over the years, NPC AI is usually scripted
(Rabin, 2003). Scripts are sequences of commands
that the NPC executes in response to a game event.
Scripted NPCs are static, meaning that they can react
to dynamic events only in a limited way (Nareyek,
2000). Group AI for computer games presents ad-
ditional problems to scripting, since the NPC group
actions are difficult to predict. One way to make the
NPCs coordinate their actions is to use roles, which
are distributed among the NPCs (Tambe, 1997).
However, this might not be the optimal solution, since
it means only the distribution of scripted tasks to a set
of NPCs.

Game theory studies strategic situations, in which

agents make decisions that affect other agents (Dutta,
1999). Game theory assumes that each agent is ra-
tional and tries to maximize its own utility. A Nash
equilibrium is a vector of action selection strategies,
in which no agent can unilaterally change its strat-
egy and get more utility. A Nash equilibrium does
not mean that the agent group has maximal utility,
or that it is functioning with most efficiency. It just
means that each agent is acting rationally and is sat-
isfied with the group decision.

If a NPC group can find a Nash equilibrium, two
important requirements for computer game immer-
sion are fulfilled: each NPC’s actions appear individ-
ually reasonable and the group seems to act in a coor-
dinated way. This requires that the NPC has a set of
goals, which it tries to attain. The NPC gets most util-
ity from the group actions which take it closer to its
goals. The NPC’s goals are encoded in a utility func-
tion. Defining the utility function is the creative part
of utilizing game theory in computer game design,
since Nash equilibria can be found algorithmically.

In our research we study creating a well-working
utility function for a common class of computer ac-
tion games. We also consider the problems of finding
a suitable Nash equilibrium in reasonable time.

2 Game Theory
Game theory helps to model situations that in-
volve several interdependent agents, which must each
choose an action from a limited set of possible ac-
tions. Choosing the action is called playing a strat-



egy. One round of strategy coordination between
agents is called a game. The game can be represented
as a set of game states. A game state has an action
vector with one action from each agent. Thus a game
has kn game states, if there are n players in the game
with k possible actions each. Each agent gets a utility
from each game state: the game states are often de-
scribed as utility vectors in a matrix of possible agent
actions. If an agent’s strategy is to play a single ac-
tion, it is called a pure strategy. Sometimes an agent
gets a better expected utility by selecting an action
randomly from a probability distribution over a set of
actions; this is called a mixed strategy. The set of
actions an agent plays with probability x > 0 is the
agent’s support.

As stated before, a strategy vector is a Nash equi-
librium only if no agent can unilaterally change their
action decision and get a better utility. Nash (1950)
proved that every finite game has at least one Nash
equilibrium. When a pure strategy Nash equilibrium
cannot be found, a mixed strategy equilibrium has to
exist. If we find a Nash equilibrium, we have a way
for all participating agents to act rationally from both
outside and group perspective.

Finding a Nash equilibrium from a game state
search space is non-trivial. Its time complexity is not
known (Papadimitriou and Roughgarden, 2005). The
n-player time complexity is much worse than the 2-
player case (McKelvey and McLennan, 1996). The
problem is that the players’ strategy choices are in-
terdependent: whenever you change one variable, the
utilities for each other player also change. The prob-
lem of finding all Nash equilibria is also much more
difficult than the problem of finding a single Nash
equilibrium.

How can we know if the Nash equilibrium we
found is good enough? It also turns out to be quite
difficult. Determining the existence of a Pareto-
optimal equilibrium is NP-hard (Conitzer and Sand-
holm, 2003). Even finding out if more than one Nash
equilibrium exists is NP-hard. However, some places
in the search space are more likely to have a Nash
equilibria, and that heuristic is used in a simple search
algorithm to find a single Nash equilibrium (Porter
et al., 2004).

The search algorithm is based on the heuristic that
many games have an equilibrium within very small
supports. Therefore the search through the search
space should be started at support size 1, which
means pure strategies. In real-world games a strategy
is often dominated by another strategy. A dominated
strategy gives worse or at most the same utility as
the strategy dominating it. Therefore it never makes

sense to play a dominated strategy. The search space
is made smaller by using iterated removal of domi-
nated strategies before looking for the Nash equilib-
rium in the support.

3 Problem Setting
A typical action game can be described as a set of
combat encounters between the PC and multiple en-
emy NPCs. The NPCs usually try to move close to
the PC and then make their attack. The abstract test
simulation models one such encounter omitting the
final attack phase. The purpose of the simulation is
therefore to observe NPC movement in a game-like
situation, in which the NPCs try to get close to the
PC while avoiding being exposed to the PC’s pos-
sible weapons. A starting point for the simulation
is described in Figure 1. The game area consists of
squares. In the figure the PC is represented by ’P’
and the NPCs by numbers from 1 to 3. ’X’ represents
a wall square and ’.’ represents open ground.
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Figure 1: A starting point for test simulation.

The test simulation has a set of rules. It is di-
vided into turns, and the NPCs decide their actions
each turn. The PC doesn’t move in this simulation.
Each NPC has a set of five possible actions, which
can be performed during a single turn: { left, right,
up, down, do nothing }. A NPC cannot move through
the walls, so whenever a NPC is located next to a
wall, it’s action set is reduced by the action that would
move it into the wall. The PC cannot see through
walls. Two NPCs can be located in the same square,
but a NPC cannot move to the square occupied by the
PC.

In the test simulation all NPCs choose their actions



simultaneously from their action sets. However, the
Nash equilibrium search is not made by the NPCs
themselves, but by a central agency. This is justi-
fied, since the chosen strategies form a Nash equi-
librium. Even if the computing was left to the NPCs,
their individual strategy choices would still converge
to a Nash equilibrium.

Levy and Rosenschein (1992) studied the game
theoretic solution for the predator-prey problem do-
main, which has four predator agents trying to encir-
cle a prey agent in a grid. They used game theory
as a means to have the predator agents move more
precisely when they got near the prey. The game the-
oretic predators avoided collisions by selecting game
states where no collisions occured: these were nat-
urally the Nash equilibria. In our simulation, how-
ever, the focus is different. Game theory allows the
NPCs to act individually rationally in a way that can
be, if necessary, against other agents and their goals.
This allows for realistic-looking cooperation, which
in turn leads to a greater immersion for the player.
It is easy to make a NPC in a computer game to be
more dangerous for the PC: the NPC can be made,
for instance, faster or stronger. The problem of mak-
ing the NPCs appear life-like is much more difficult.
The simulation aims to provide some insight into how
realistic-looking NPC movement might be attained.

All ”intelligence” of the NPCs is encoded in the
utility function, which means that all targeted behav-
ioral patterns must be present within it. Levy and
Rosenschein used a two-part utility function with the
predator agents: one part of the function gives the
agents payoff for minimizing the distance to the prey
agent and the other half encourages circulation by re-
warding blocked prey movement directions. Follow-
ing the same principle, the utility function that we
use is made of terms that detail different aspects of
the NPCs’ goals. Each term has an additional weight
multiplier, which is used to control and balance the
amount of importance the term has. We found the
following terms to be the most important in guid-
ing the NPCs’ actions in the simulation: aggression,
safety, balance, ambition, personal space and inertia.
The final utility function is the sum of all the terms
weighted with their weight multipliers. The terms are
detailed below.

Aggression means the NPC’s wish to get close to
the PC. The term’s value is −xDi, where Di is the
NPC i’s distance from the player and x is an addi-
tional constant multiplier representing the growing of
aggression when the NPC gets nearer the PC.

Safety represents the NPC’s reluctance to take
risks. When a NPC is threatened, it gets a fine. The

fine amounts to −ri/k, where ri is the severity of the
threat that the NPC encounters and k is the number of
NPCs who are suspect to the same threat. If k is zero,
no NPCs are threatened, and the term is not used. In
the test simulation a NPC was threatened, if it was on
the PC’s line of sight. The divisor is used to make it
safer for one NPC, if several NPCs are subjected to
the same threat from the PC.

Balance is the NPC’s intention to stay approxi-
mately at the same distance from the PC as the other
NPCs. The value of balance is −di, where di =∣∣∣∣Di −

∑
D−i

k

∣∣∣∣.
∑

D−i

k is the average distance of all

other NPCs from the PC. Di is the NPC i’s distance

from the PC.
∣∣∣∣Di −

∑
D−i

k

∣∣∣∣ gets bigger as the NPC’s

distance from the PC gets further from the average
distance. The term is needed to make the NPCs try to
maintain a steady and simultaneous advance towards
the PC, and to prevent the NPCs from running to the
PC one by one. The term is not used if there are no
other NPCs in the game.

Ambition means the NPC’s desire to be the first at-
tacker towards the PC. If the NPC is not moving to-
wards the PC, ambition value is 0. If no NPC is going
towards the PC, the ambition value is tx, where t it
the amount of turns in which no NPC has moved to-
wards the PC and x is constant.

Personal space is the amount of personal space a
NPC needs. The term has value xi, which is the
NPC’s distance to the nearest other NPC, if the dis-
tance is below a threshold value x′. If xi > x′, the
term has value x′ instead of xi. This term is needed to
avoid the NPCs packing together and encourage them
to go around obstacles from different sides.

Inertia is the NPC’s tendency to keep to a previ-
ously selected action. The term makes the NPCs ap-
pear consistent in their actions. If the NPC is moving
in the same direction as in the previous game turn,
it gets bonus x. If the NPC is moving in an orthog-
onal direction, it gets the bonus x

2 . Inertia helps to
prevent the NPCs from reverting their decisions: if
ambition drives the NPCs from their hiding places,
inertia keeps them from retreating instantly back into
safety.

Since the utility function provides the information
about which actions the NPC values, all other neces-
sary AI functions must be implemented there. The
test simulation required implementation of A* algo-
rithm for obstacle avoidance: all measured distances
towards the PC or other NPCs are actually shortest-
path distances. Game-specific values can also be ad-
justed in the utility function. For instance, the game
designer may want to change the game difficulty level



mid-game by tweaking the game difficulty parame-
ters (Spronck et al., 2004). These adjustments must
be made within the utility function, otherwise they
have no effect in NPC action selection.

The simple search algorithm is deterministic by na-
ture, and therefore the Nash equilibrium found from
any given starting setup is always the same. If a
mixed strategy is found, randomness follows implic-
itly, because the action is randomly selected from the
probability distribution. However, the algorithm is
biased towards small supports for efficiency reasons,
and therefore tends to find pure strategies first. The
pure strategies are common with the game simulation
setting, since the NPCs are rarely competing directly
against one another. The game designer may want
to implement randomness in the utility function by
adding a new term, error, which is a random value
from [0 . . . 1]. The weight multiplier can be used to
adjust the error range.

4 Results
The simulation yielded two kinds of results: the time
needed to find the Nash equilibrium during a typi-
cal game turn and the NPCs’ actions using the utility
function described in section 3. The simulation run
began from the setting in Figure 1.

Because the computer game AI is only good if it
gives the player a sense of immersion, the evaluation
of the utility function’s suitability must be done from
the viewpoint of game playability. However, no large
gameplay tests were organized. The utility function
goodness is approximated by visually inspecting the
game setting after every game turn.

Figure 2 shows the game board on turn 3. The ’+’-
signs represent the squares that the NPCs have been
in. NPC 2 began the game by moving south, even
though its distance to the PC is the same in both the
northern and southern route around the obstacle. This
is due to the fact that NPCs 1 and 2 were pushed away
from each another by the term personal space in the
utility function.

Figure 3 on turn 10 has all NPCs in place to begin
the final stage of the assault. None of the NPCs are
on the PC’s line of sight. The NPCs 3 and 2 have
reached the edge of the open field before NPC 1, but
they have elected to wait until everyone is in position
for the attack. The term safety is holding them from
attacking over the open ground.

Game turn 12 is represented in Figure 4. The NPCs
have waited one turn in place and then decided to
attack. Each NPC has moved simultaneously away
from cover towards the PC. In game theoretic sense,
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Figure 2: Turn 3. NPC 1 has begun to go around the
obstacle by North and NPC 2 from South. NPC 3 has
moved into cover.

.............................

...........+++1..............

...........+.XX..............

......++++++X.....P..........

.........XXXX................

...+..XXXXX..................

...+...XX....................

...+++++2....................

.............................

....X........................

....XXX..............XXXXX...

...........X.........3XXXX...

.....................++X.....

......................+......

Figure 3: Turn 10. All members of the NPC team
have arrived to the edge of the open ground.

two things might have happened. The first possibility
is that term ambience makes one NPC’s utility from
moving towards the PC grow so big that attacking
dominates the NPC’s other possible actions. There-
fore the NPC’s best course of action is to attack re-
gardless of the other NPCs’ actions. When this hap-
pens, the sanction from term safety diminishes due to
the number of visible NPCs, and it suddenly makes
sense for the other NPCs to participate in the attack.
The other possibility is that the algorithm for finding
Nash equilibria has found the equilibrium, in which
all NPCs move forward, before the equilibrium, in
which the NPCs stay put.

NPCs succeed in synchronizing their attack be-
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Figure 4: Turn 12. NPC team decides to attack. All
NPCs move simultaneously away from cover.

cause the Nash equilibrium defines the strategies for
all NPCs before the real movement. Synchronization
leaves the human player with the impression of plan-
ning and communicating enemies. If the NPCs had
ran into the open one by one, stopping the enemies
would have been much easier for the human player,
and the attack of the last NPC might have seemed
foolhardy after the demise of its companions.

Figure 5 shows the game board on turn 21. NPCs
1 and 3 have moved next to the PC. NPC 2 has
found new cover and has decided not to move for-
ward again. The situation seems erroneous, and it is
true that the NPC 2’s actions seem to undermine the
efficiency of the attack. However, this can be inter-
preted to show that NPC 2 has reexamined the situ-
ation and decided to stay behind for it’s own safety.
One way to resolve the situation is to change the term
safety to lessen the threat value, if at least one NPC is
already in hand-to-hand combat with the PC.

Creating a usable utility function is quite straight-
forward if agent’s goals can be determined. Balanc-
ing the terms to produce the desired behavior pat-
terns in different game settings can be more time-
consuming. Each different video game needs a spe-
cific utility function for its NPCs, since for instance
the distance measurements are done in different units.
Also the game designer may want to introduce differ-
ent behavior to different NPC types, which is done by
creating a utility function for each NPC class within
the video game.

The test simulation used the McKelvey et al.
(2006) implementation of the previously mentioned
simple search algorithm. The algorithm’s time com-
plexity limits the simulation’s feasibility when the
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Figure 5: Turn 21. NPCs 1 and 3 have reached the
PC. NPC 2 has gone into hiding once more.

number of agents in the game grows larger.
We measured the time needed for finding a single

Nash equilibrium in a Macintosh computer equipped
with a 2.1 GHz processor. The extra calculations in
the utility function (such as A* algorithm) were left
out. The needed time was calculated using the three-
agent setting described in Figure 1 and the previously
detailed utility function. The measurements were also
made using six NPCs, whose starting positions are
detailed in Figure 6.

.............................

.............................

.............XX..P...........

......1.....X................

.........XXXX................

...2..XXXXX...............5..

.......XX....................

.................4...........

.............................

....X........................

....XXX..............XXXXX...

...........X..........XXXX...

....6..................X.....

......................3......

Figure 6: The starting point for the six-player simu-
lation.

Both games were run for 25 turns, and the exper-
iment was repeated ten times. The games had there-
fore 250 data points each. The test results are pre-
sented in table 1.



Agents min. max. avg. median
3 42 ms 225 ms 71 ms 62 ms
6 97 ms 2760 ms 254 ms 146 ms

Table 1: Experimental results for the time needed to
find the first Nash equilibrium in attack game.

The results show that in a three-player game the
Nash equilibrium was found in average within 71 mil-
liseconds. This can be still feasible for real video
games. In six-player games the worst calculation took
almost three seconds, which is far too long for ac-
tion games. Still, the median in six-player game was
only 146 milliseconds, which may still be acceptable.
In both games a mixed strategy was never needed:
the Nash equilibria were always found in supports of
size 1. The worst times were measured in the first
turn. When a NPC had several dominated actions or
was next to a wall, the search was faster, because the
search space was reduced.

5 Conclusion

Using game theoretic methods in action games seems
a promising way to do a more plausible NPC group
AI. If the agents try to find a Nash equilibrium, their
individual decisions are rational. If the agents’ utility
functions are designed to find cooperative behavior
patterns, the group seems to function with a degree of
cooperation. Having agents do their decisions based
on agents’ internal valuations helps agents maintain
their intelligent-looking behavior in situations, where
a scripted approach would lead to non-satisfactory re-
sults. This might make the game designer’s work eas-
ier, since all encounters between the PC and a NPC
group need not be planned in advance.

The problem in this approach is the time complex-
ity of finding Nash equilibria. Finding one equi-
librium is difficult, and finding all equilibria is pro-
hibitively expensive. Still, our results indicate that
modern computers with a good heuristic might be
able to find one Nash equilibrium relatively fast, es-
pecially if the NPCs’ action sets are limited and the
number of NPCs is small. If the Nash Equilibria can-
not be found soon enough, it is up to the game de-
signer to decide the fallback mechanism. The scripted
approach is one possibility, and another is to use a
greedy algorithm based on the utility functions. A
greedy algorithm would not waste time on calculat-
ing the possible future actions of the other NPCs, but
would assume that the NPCs stayed idle or continued

with a similar action as in the previous game round.
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