Lecture 5
Data-analysis
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Generative model

* The world is described by a model that governs
the probabilities of observing different kinds of
data.

Generates >




Data

* We will mostly handle tabular format discrete
variables.

D VO V1 V2 V3
& 0 1 0 2
d, 1 1 1 2
0, 1 1 1 0
d3 0 0 0 1




Likelihood P(d|O)

* Data item d is generated by a mechanism
(model) parameters © of which determine how
probably different values of d are generated,
l.e., the distribution of d.

* An example:

— Mechanism is drawing with replacement from a
bucket of black and white balls, and the parameter
0 _is the number of black balls, and the 8 is the

number of white balls in a bucket:
- P(b6,,6 ) =6./(6.+6 ) and P(w|8 ,0 ) =8 /(6 +6 ).

* |n orthodox statistics, likelihood P(D|0) is often seen as a
function of 6, a kind of L _(6). Whatever.



.1.d.

* |f the data generating mechanism depends on
© only (and not on what has been generated
before), the sequence of data data is called
independent and identicallyﬂdistributed.

* Then P(d, d,...,do)=]] P(d)o)
* And -

— order of di does not matter.
- P(b,w,b,b,w|0,,0 )=P(b,b,w,w,w|0,,0 )
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Bernoulli model

* A model for i.i.d. binary outcomes (heads,tails)
(0,1), (black, white), (true, false).

* One parameter: 6<[0,1].

- For example:
* P(d=true | 6) = 6, P(d=false| 6) = 1-6.

* NB! The probabilities of d being true are defined by the
parameter 6. Parameters are not probabillities.

* Black and white bucket as a Bernoulli model:

- 0 is the proportion of black balls in a bucket P(b | 6) = 6.

- P(D|6) = 6™ (1-6)™, where N, and N_are numbers of black and
white balls in the data D.

- NB!' P(D|6) depends on data D through N_and N _only.



Maximum likelihood

* Given a data D, different values of 6 yield
different probabilities P(D|0). The parameters

that yield the largest probability of P(D|06) are

called maximum likelihood parameters for the
data D.

- P(b,b,w,w,w|0=0.7) = 0.720.33=0.1323
- P(b,b,w,w,w|0=0.1) = 0.120.9°=0.00729
- argmax_ P(b,b,w,w,w|©=6) = argmax_ 6°(1-8)=?



Likelihood P(b,b,w,w,w|O)
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*NB! Not a distribution, but a function of ©.



ML-parameters for the Bernoulli model.
(High school math refresher)

* So let us find ML-parameters for the Bernoulli
model for the data with N _black balls and N

white ones.
P(D|o)=06""(1-0)"",
so let us check when P‘(D|0)=0,0<€|0,1].
P'(D|0)=N,0"" " (1-0)"+0™" N _(1-0)""' -1
=0 (1-0)""'[N,(1-60)-0 N,
=0 (1-0)""'[N,—~(N,+N,)0]=0
Nb
N,+N_,

& N,—(N,+N,)0=0 <0=



But ML-parameters are too gullible

* Assume D=(b,b), i.e., two black balls.

- ML-parameter is ©=1.
- Now P(next ball is white | ©=1)= 0.

- Selecting ML parameters do not appear to be a
rational choice.

* Be Bayesian:

- Parameters are exactly the things you do not know
for sure, so they have a (prior and posterior)
distribution.

- Posterior distribution of the model is the goal of
the Bayesian data-analysis.



Good old Bayes rule

* Nothing special since
O is just a random P(6| D)= P(0) P(D|0)
variable. P

* And if i.i.d, we get a
kind of Nalve Bayes
structure.

* NB. Not a typical
Bayesian network
since parameter(s)
also drawn as
node(s).




Predicting with posterior distribution

* Not a two phase process like in ML-case

- first find parameters ©.
- then use them to calculate P(d|©).

* Instead: P(d|D)=) P(6,d D)

0e®

=Y P(dle, D) P(0| D)

0e®

=> P(d|6)P(6|D)

0@
* Bayesian prediction uses predictions P(d|06)
from all the models 6, and weighs them by the
posterior probability P(6|D) of the models.



Posterior for Bernoulli parameter

* So likelihood P(D|6) we can calculate.

* How about the prior P(6)?

- We should give a real number for each 6.

* One way out: use discrete set of parameters instead of
continuous 6. Works, is flexible, but does not scale up
well.

* Another way: Study calculus
* And how about p(p fP P(D|o)de

— P(D) contains P(0), so let us care about the prior
first.



Prior for Bernoulli model

* The form of the likelihood gives us a hint for a
comfortable prior

- P(D|6) = 8™ (1-6)"™"

—- If we define the P(8) = C 6% (1-0)*",
» C taking care that [P(6)d6 = 1, then

- P(8)P(D|0)=C 0""**" (1—@)N*F-

* Thus updating from prior to posterior is easy.
Just use the formula for the prior, and update
exponents a-1 and (3-1.



P(®) of a form C 0*'(1-0)*"is
called Beta(a,[3) distribution

* The expected value of O is a/(a+f3).
* The normalizing Constant
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Posterior of the Bernoulli model

P(0|D,«,B)= Ff(fxo;lffg) g N1 (1 _ )t N

* Thus, a posteriori, O is distributed by
Beta(a+N_,B+N ).

* And prediction:

P(b|D,x,B)=) P(blo,D,x,B)P(0|D,x,B)do

1

P(blo) P(6|D,x,B)do= 6 P(6|D,x,B)d6

0

Q%_JH o%—an—\

B x+ N,
&+ N,+B+ N,

I
by

p(0)



Bernoulli prediction example

x+ N,
x+N,+B+ N,

P(b|D,x,B)=

* So P(bjw,w,a=1,=1) = (1+0) / (1+0+1+2) = 1/4.
— sounds more rational.
- Notice how a and 3 act like extra counts.

* That's why a + [3 is often called "equivalent
sample size”. The prior acts like seeing a
black balls and 3 white balls before seeing
data.



One variable, more than two values

* Variable X with possible values 1,2,...,n.

Parameter vector 6=(6_, 6., ..., 6 ) with 26=1.

P(X=i[6)=6.

Prior P(6)=Dir(6; o, o, .

v OL) =

n

];!:r((xj) j

Posterior P(0)=Dir(8; o +N , o +N_, ..., o +N )

Prediction P(x | D, o) =

x+ N,

- :
Z(ijrNj
=1



