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Independence

● if P(A=a,B=a) = P(A=a)P(B=b) for all a and b, 
then we call A and B (marginally) independent.

● if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c) 
for all a and b, then we call A and B 
conditionally independent given C=c.

● if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c) 
for all a, b and c, then we call A and B 
conditionally independent given C.

● P A ,B=P A P B implies

P A∣B=
P A ,B

P B
=
P A PB

P B
=P A 



  

Independence saves space

● If A and B are independent given C 
● P(A,B,C) = P(C,A,B)

= P(C)P(A|C)P(B|A,C)
= P(C)P(A|C)P(B|C)

● Instead of having a full joint probability table for 
P(A,B,C), we can have a table for P(C) and 
tables P(A|C=c) and P(B|C=c) for each c. 
– Even for binary variables this saves space:

●  23 = 8 vs. 2 + 2 + 2 = 6. 

– With many variables and many independences you  
save a lot.



  

Chain Rule – Independence - BN
Chainrule : P A ,B ,C , D=P AP B∣AP C∣A , BP D∣A , B ,C 

A B C D

A B C D

A
B

C

D

Independence : P A , B ,C , D=P AP BP C∣A , BP D∣A ,C 

Bayesian
Network
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But order matters 

●P(A,B,C) = P(C,A,B)
● P(A)P(B|A)P(C|A,B) = P(C)P(A|C)P(B|A,C)
● And if A and B are conditionally independent 
given C:

1.P(A,B,C) = P(A)P(B|A)P(C|A,B)
2.P(C,A,B) = P(C)P(A|C)P(B|C)

C

B A

C

B1. 2.

With the same independence assumptions, some orders yield simpler networks.



  

● Bayesian network structure forms a directed 
acyclic graph (DAG).

● If we have a DAG G, we denote the parents of 
the node (variable) X

i
 with Pa

G
(x

i
) and a value 

configuration of Pa
G
(x

i
) with pa

G
(x

i
) : 

Bayes net as a factorization

P x1,x2, ... , xn∣G=∏
i=1

n

P xi∣paGxi,

● where P(x
i
|pa

G
(x

i
)) are called local probabilities.

– Local probabilities are stored in conditional 
probability tables CPTs.



  

A Bayesian network

Cloudy

Rain

Cloudy=no Cloudy=yes
0.5 0.5

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1

Sprinkler

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2

Sprinkler Rain WetGrass=yesWetGrass=no
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10

Wet Grass

P(Cloudy)

P(Sprinkler | Cloudy)

P(Rain | Cloudy)

P(WetGrass | Sprinkler, Rain)



  

Causal order recommended

● Causes first, then effects.
● Since causes render direct consequences 

independent yielding smaller CPTs
● Causal CPTs are easier to assess by human 

experts
● Smaller CPT:s are easier to estimate reliably 

from a finite set of observations (data)
● Causal networks can be used to make causal 

inferences too.



  

Markov conditions

● Local (parental) Markov condition
– X is independent of its ancestors given its parents.

● Global Markov Condition
– X is independent of any set of other variables given 

its parents, children and parents of its children 
(Markov blanket)

● D-separation
– X and Y are dependent given Z, if there is an 

unblocked  path without colliders between X and Y.

– or if each collider or some descendant of each 
collider is in Z. 



  

Inference in Bayesian networks

● Given a Bayesian network B (i.e., DAG and 
CPTs) , calculate P(X|e) where X is a set of 
query variables and e is an instantiaton of 
observed variables E (X and E separate).

● There is always the way through marginals:

– normalize P(x,e) = Σ
ydom(Y)

P(x,y,e), where dom(Y), 

is a set of all possible instantiations of the 
unobserved non-query variables Y.

● There are much smarter algorithms too, but in 
general the problem is NP hard.



  

Approximate inference in 
Bayesian networks

● How to estimate how probably it rains next day, 
if the previous night temperature is above the 
month average.
– count rainy and non rainy days after warm nights 

(and count relative frequencies).

● Rejection sampling for P(X|e) :

1.Generate random vectors (x
r
,e

r
,y

r
).

2.Discard those those that do not match e.

3.Count frequencies of different x
r
 and normalize.



  

How to generate random vectors 
from a Bayesian network

● Sample parents first
– P(C)

● (0.5, 0,5) → yes

– P(S|C=yes) 
● (0.9, 0.1) → on

– P(R | C=yes)
● (0.8, 0.2) → no

– P(W | S=on, R=no)
● (0.9, 0.1) → yes

● P(C,S,R,W) = 
P(yes,on,no,yes) =             
0.5 x 0.9 x 0.2 x 0.9 = 0.081

Cloudy=no Cloudy=yes
0.5 0.5

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2

Sprinkler Rain WetGrass=yesWetGrass=no
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10



  

Rejection sampling, bad news

● Good news first:
– super easy to implement

● Bad news:
– if evidence e is improbable, generated random 

vectors seldom conform with e, thus it takes a long 
time before we get a good estimate P(X|e). 

– With long E, all e are improbable.

● So called likelihood weighting can alleviate the 
problem a little bit, but not enough. 



  

Gibbs sampling

● Given a Bayesian network for n variables 
XEY, calculate P(X|e) as follows:

– N = (associative) array of zeros

– Generate random vector x,y.

– While True: 
● for V in X,Y:

– generate v from P(V | MarkovBlanket(V))

– replace v in x,y.

– N[x] +=1

– print normalize(N[x])



  

P(X|mb(X))?

PX∣mbX 

=P X∣mb x,Rest

=
P X ,mbX,Rest
PmbX ,Rest 

∝PAll

=∏
X i∈X

P Xi∣Pa X i

=P X∣Pa X  ∏
C∈ch X 

P C∣Pa C ∏
R∈Rest∪Pa V 

P R∣Pa R 

∝PX∣Pa X  ∏
C∈ch X

P C∣Pa C



  

● All decent Markov Chains q have a unique 
stationary distribution P* that can be estimated 
by simulation.

● Detailed balance of transition function q and 
state distribution P* implies stationarity of P*.

● Proposed q, P(V|mb(V)), and P(X|e) form a 
detailed balance, thus P(X|e) is a stationary 
distribution, so it can be estimated by 
simulation.

Why does it work



  

Markov chains
stationary distribution

● Defined by transition probabilities between 
states q(x→x'), where x and x' belong to a set 
of states X.

● Distribution P* over X is called stationary 
distribution for the Markov Chain q, if 
P*(x')=∑

x
P*(x)q(x→x').

● P*(X) can be found out by simulating Markov 
Chain q starting from the random state x

r
.



  

Markov Chain
detailed balance

● Distribution P over X and a state transition 
distribution q are said to form a detailed 
balance, if for any states x and x',     
P(x)q(x→x') = P(x')q(x'→x), i.e. it is equally 
probable to witness transition from x to x' as it is 
to witness transition from x' to x.

● If P and q form a detailed balance,  
∑

x
P(x)q(x→x') = ∑

x
P(x')q(x'→x) = 

P(x')∑
x
q(x'→x) =P(x'), thus P is stationary.



  

Gibbs sampler as Markov Chain

● Consider Z=(X,Y) to be states of a Markov 
chain, and q((v,z

-V
))→(v',z

-V
))=P(v'|z

-V
, e), where 

Z
-V

 = Z-{V}. Now P*(Z)=P(Z|e) and q form a 

detailed balance, thus P* is a stationary 
distribution of q and it can be found with the 
sampling algorithm.

– P*(z)q(z→z') = P(z|e)P(v'|z
-V

, e)                               

= P(v,z
-V

|e)P(v'|z
-V

, e)                                                

= P(v|z
-V

,e)P(z
-V

|e)P(v'|z
-V

, e)                                    

= P(v|z
-V

,e)P(v', z
-V

|e) = q(z'→z)P*(z'), thus balance.


