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Independence

 if P(A=a,B=a) = P(A=a)P(B=Db) for all a and b,
then we call A and B (marginally) independent.

 if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c)
for all a and b, then we call A and B
conditionally independent given C=c.

 if P(A=a,B=a | C=c) = P(A=a|C=c)P(B=b|C=c)
for all a, b and c, then we call Aand B
conditionally independent given C.

« P(A,B)=P(A)P(B) implies

_P(A,B)_P(A)P(B)_
PQMB)-_Puﬂ =55 —P(A)




Independence saves space

* If Aand B are independent given C
P(A,B,C) = P(C,A,B)
- P(C)P(A|C)P(BJ|A,C)
- P(C)P(A|C)P(BIC)
* |nstead of having a full joint probability table for

P(A,B,C), we can have a table for P(C) and
tables P(A|C=c) and P(B|C=c) for each c.
- Even for binary variables this saves space:

¢« 2°=8vs.2+2+2=6.

- With many variables and many independences you
save a lot.



Chain Rule — Independence - BN

Chainrule: P(A,B,C,D)= P(B|A)P(C|4,B)P(D|A4,B,C)
Independence: P(A,B,C,D)= P(C|A,B)P(D|4,C)
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But order matters

P(A,B,C) = P(C,A,B)
* P(A)P(B|A)P(C|A,B) = P(C)P(A|C)P(B|A,C)

* And if A and B are conditionally independent
given C:

1.P(A,B,C) = P(A)P(B|A)P(C|A,B)
2.P(C,A,B) = P(C)P(A|C)P(B|C)
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1. L 2. (A (&
o

With the same independence assumptions, some orders yield simpler networks.



Bayes net as a factorization

* Bayesian network structure forms a directed
acyclic graph (DAG).

 |f we have a DAG G, we denote the parents of
the node (variable) X with Pa_(x) and a value

configuration of Pa_(x) with pa_(x) :

P(x; X, ""Xn‘G):H P(x,|pas(x;)),
i=1

. where P(x[pa_(x)) are called local probabilities.

- Local probabilities are stored in conditional
probability tables CPTs.



P(Sprinkler | Cloudy)

A Bayesian network

P(Cloudy)
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Cloudy |Sprinkler=onSprinkler=off
no 0.5 0.5
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P(WetGrass | Sprinkler, Rain)

4 Sprinkler

P(Rain | Cloudy)

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2
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on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes (0.90 0.10




Causal order recommended

 Causes first, then effects.

e Since causes render direct consequences
independent yielding smaller CPTs

 Causal CPTs are easier to assess by human
experts

 Smaller CPT:s are easier to estimate reliably
from a finite set of observations (data)

e Causal networks can be used to make causal
Inferences too.



Markov conditions

* Local (parental) Markov condition

- X is independent of its ancestors given its parents.
* Global Markov Condition

- X is independent of any set of other variables given
its parents, children and parents of its children
(Markov blanket)

e D-separation

- Xand Y are dependent given Z, if there is an
unblocked path without colliders between X and Y.

— or if each collider or some descendant of each
collider is in Z.



Inference in Bayesian networks

* Given a Bayesian network B (i.e., DAG and
CPTs), calculate P(X|e) where X is a set of
query variables and e is an instantiaton of
observed variables E (X and E separate).

* There is always the way through marginals:

- normalize P(x.,e) = Zyedom(Y)P(x,y,e), where dom(Y),

Is a set of all possible instantiations of the
unobserved non-query variables Y.

 There are much smarter algorithms too, but in
general the problem is NP hard.



Approximate inference in
Bayesian networks

How to estimate how probably it rains next day,
iIf the previous night temperature is above the
month average.

- count rainy and non rainy days after warm nights
(and count relative frequencies).

Rejection sampling for P(X]e) :
1.Generate random vectors (x ,e .y ).

2.Discard those those that do not match e.
3.Count frequencies of different x_and normalize.



How to generate random vectors
from a Bayesian network

o

Cloudy=no

Cloudy=yes
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Cloudy |Sprinkler=onSprinkler=off
no (05 0.5
yes (0.9 0.1

S

N

o Sample parents first
- P(C)
e (0.5,0,5) — yes
- P(S|C=yes)

Rain=no « (0.9,0.1) - on

Cloudy Rain=yes
no (0.2 0.8
yes 0.8 0.2

- P(R | C=yes)

L

Sprinkler Rain WetGrass=yesWetGrass=no
on no (0.90 0.10
on yes 0.9 0.01
off no [0.01 0.99
off yes {0.90 0.10

¢ (0.8,0.2) - no
- P(W | S=on, R=no)
« (0.9,0.1) —> yes
e P(C,5,R,W) =

P(yes,on,no,yes) =
0.5x09x0.2x0.9=0.081



Rejection sampling, bad news

e Good news first:
— super easy to implement
 Bad news:

- if evidence e is improbable, generated random
vectors seldom conform with e, thus it takes a long
time before we get a good estimate P(X|e).

- With long E, all e are improbable.

» So called likelihood weighting can alleviate the
problem a little bit, but not enough.



Gibbs sampling

* Given a Bayesian network for n variables
XUEUY, calculate P(X|e) as follows:

N = (associative) array of zeros
Gener ate random vector Xx,Y.
VWhil e True:

for Vin XY:

generate v from P(V | MarkovBl anket (V))
replace v in x,Y.

N x] +=1

print normalize(N x])



P(X| mb( X)) ?

P(X|mb (X))
=P (X|mb(x), Rest)
_P(X,mb(X),Rest)
P(mb(X),Rest)
P (All)
— H P(X,|Pa(X,))

X, eX

=P(X|Pa(X)) |] P(ClPa(C)) |l P(RIPa(R))

Cech(X) ReRestUPa (V)

«P(X|Pa(X)) |] P(C|Pa(C))

Cech(X)




Why does It work

 All decent Markov Chains g have a unique
stationary distribution P* that can be estimated
by simulation.

* Detailed balance of transition function g and
state distribution P* implies stationarity of P*.

* Proposed g, P(V|mb(V)), and P(X|e) form a
detailed balance, thus P(X|e) is a stationary
distribution, so it can be estimated by
simulation.



Markov chains
stationary distribution

* Defined by transition probabilities between
states q(x—x'), where x and x' belong to a set
of states X.

» Distribution P* over X is called stationary
distribution for the Markov Chain q, if
P*(x")=2 P*(x)a(x—X).

* P*(X) can be found out by simulating Markov
Chain g starting from the random state x .



Markov Chain
detailed balance

* Distribution P over X and a state transition
distribution q are said to form a detailed
balance, if for any states x and x/,

P(x)q(x—x') = P(x")g(x'—Xx), i.e. it is equally
probable to witness transition from x to x' as it is
to witness transition from x' to x.

e |f P and g form a detailed balance,
2. P(x)a(x—x’) = 2 P(X)q(xX'—X) =
P(X)2_ a(xX'—x) =P(x), thus P is stationary.



Gibbs sampler as Markov Chain

* Consider Z=(X,Y) to be states of a Markov
chain, and q((v,z, ))—(V',z, ))=P(v|z,, e), where
Z  =Z-{V}. Now P*(Z)=P(Z|e) and q form a
detailed balance, thus P* is a stationary
distribution of g and it can be found with the
sampling algorithm.

- P*(z)q(z—7') = P(z|e)P(vz,, e)
= P(vz JePViz, , e)
P(vlz,,.e)P(z Ie) (Viz,, e)
P(v|z, .e)P (v z |e) = q(z'—2z)P*(z'), thus balance.



