
  

Overview of the Lecture II

● Probability of what
● The axioms of probability
● Joint probability distribution



  

Probability of propositions

● Notation P(x) : read “probability of “x-pression”
● Expressions are statements about the contents 

of random variables
● Random variables are very much like variables 

in computer programming languages.
– Boolean; statements, propositions

– Enumerated, discrete; small set of possible values

– Integers or natural numbers; idealized to infinity  

– Floating point (continuous); real numbers to ease 
calculations



  

Elementary “probositions”

● P(X=x)
– probability that random variable X has value x

● we like to use words starting with capital letters to denote 
random variables

● For example:
– P(It_will_snow_tomorrow = true)

– P(The_weekday_I'll_graduate = sunday)

– P(Number_of_planets_around_Gliese_581 = 7)

– P(The_average_height_of_adult Finns = 1702mm)



  

Semantics of P(X=x)=p

● So what does it mean?
– P(The_weekday_I'll_graduate = sunday)=0.20

– P(Number_of_planets_around_Gliese_581 = 7)=0.3

● Bayesian interpretation:
– The proposition is either true or false, nothing in 

between, but we may be unsure about the truth. 
Probabilities measure that uncertainty.

– The greater the p, the more we believe that X=x:
● P(X=x) = 1 : Agent totally believes that X = x. 
● P(X=x) = 0 : Agent does not believe that X=x at all.



  

● Elementary propositions can be combined 
using logical operators   and .

– like P(X=x  Y=y) etc.

– Possible shorthand: P(X S) 
● P(X≤x) for continuous variables 

– Operator is the most common one, and often 
replaced by just comma like : P(A=a, B=b).

– Naturally other operators could be defined as well 
like  and 

Compound “probositions”



  

Axioms of probability

● Kolmogorov's axioms:

1.  0 ≤ P(x) ≤ 1

2.  P(true) = 1, P(false)=0

3.  P(x  y) = P(x) + P(y) – P(x  y)

● Some extra technical axioms needed to make 
theory rigorous

● Axioms can also be derived from common 
sense requirements (Cox/Jaynes argument)



  

BA

Axiom 3 again

● P(x  y) = P(x) + P(y) – P(x  y)
● It is there to avoid double counting:

● P(“day_is_sunday”   “day_is_in_July) = 1/7 + 31/365 - 4/31.

A and 



  

Some simple derivations:

● Let a be an expression (possibly combined)
• P(a  a) = P(a) + P(a) - P(a  a)

• P(true) = P(a) + P(a) - P(false)

• 1 = P(a) + P(a)

• P(a) = 1 - P(a) 

● In general if a discrete variable D can have a 
value from the set  {d

1
,d

2
, ..., d

n
},

● For continuous variables A S: 

∑
i∈{1,... ,n }

P D=di=1

∫
a∈S

P A=ada=1



  

Discrete probability distribution

● Instead of stating that 

• P(D=d
1
)=p

1
, 

• P(D=d
2
)=p

2
, 

• ...  and  

• P(D=d
n
)=p

n
  

● we often compactly say 

– P(D)=(p
1
,p

2
, ..., p

n
). 

● P(D) is called a probability distribution of D.

– NB!  p
1 
+ p

2
 +

 
... +  p

n 
= 1.
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Continuous probability distribution

● In continuous case, the area under P(X=x) 
must equal one. For example P(X=x) = exp(-x):



  

Conditional probability

● Let us define a notation for the probability of x 
given that we know (for sure) that y:

P x∣y =
P x∧y 
P y 

● Let us define a notation for the probability of x 
given that we know (for sure) that y, and we 
know nothing else:

● Bayesians say that all probabilities are 
conditional since they are relative to the agent's 
knowledge K.

●

– But Bayesians are lazy too, so they often drop K.

– Notice that P(x  y) = P(y)P(x|y) is also very useful!

P x∣y , K =
P x∧y∣K 

P y∣K 



  

● You may also think this as a 
P(Too_Cat_Cav=x), where x is a 3-
dimensional vector of truth values.

● Generalizes naturally to any set of 
discrete variables, not only Booleans.

Joint probability distribution

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

● P(Toothache=x  Catch=y  Cavity=z) for 
all combinations of truth values (x,y,z).



  

Joys of joint probability distribution

● Summing the condition matching numbers from 
the joint probability table you can calculate 
probability of any subset of events.

● P(Cavity=true  Toothache=true):

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

0,280



  

Marginalization

● Let us assume we have a joint probability 
distribution for a set S of random variables.

● Let us further assume S1 and S2 partitions the 
set S (i.e. S1  S2 = S and S1  S2 = ).

● Now  

● where  s
1
 and s are vectors of possible value 

combination of S1 and S2 respectively.
● It is useful to use formula in both directions.

PS1=s1= ∑
s∈domS2

PS1=s1,S2=s,



  

Marginal probabilities are 
probabilities too

● P(Cavity=x, Toothache=y)

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

● Probabilities of the lines with equal values for 
marginal variables are simply summed.



  

Conditioning
● Marginalization can be used to calculate 

conditional probability:

PCavity=t∣Toothache=t =
PCavity=t∧Toothache=t 

P Toothache=t 

Toothache Catch Cavity probability
true true true 0,108
true true false 0,016
true false true 0,012
true false false 0,064
false true true 0,072
false true false 0,144
false false true 0,008
false false false 0,576

1,000

0.1080.012
0.1080.0160.0120.064

=0.6



  

Bayes formula

● yields the famous Bayes formula

P x∣y ,K =
P x∧y∣K 

P y∣K 

P x∧y∣K =P y∧x∣K =P y∣x ,K P x∣K 

P x∣y ,K =
P x∣K P y∣x ,K 

P y∣K 

P h∣e=
P hP e∣h

P e
● or

● Combining



  

Bayes formula as an update rule

● Prior belief P(h) is updated to posterior belief 
P(h|e

1
). This, in turn, gets updated to P(h|e

1
,e

2
) 

using the very same formula with P(h|e
1
) as a 

prior. Finally, denoting P(·|e
1
) with P

1
 we get

P h∣e1,e2=
P h,e1,e2

P e1,e2

=
P h ,e1P e2∣h,e1

P e1P e2∣e1

=
P h∣e1P e2∣h,e1

P e2∣e1
=
P1hP1e2∣h

P1e2



  

Great minds think alike
- after a while

● Bayes' update rule implies that two open 
minded rational (i.e.m Bayesian) agents will 
eventually agree, even if they initially have 
different believes. 

● P1(h|e
1
,e

2
, ..., e

n
) → P2(h|e

1
,e

2
, ..., e

n
),         

when n→∞.
● Thus subjective probability is not arbitrary.



  

Bayes formula for diagnostics

● Bayes formula can be used to calculate the 
probabilities of possible causes for observed 
symptoms. 

P cause∣symptoms=
P causeP symptoms∣cause

P symptoms

● Causal probabilities P(symptoms|cause) are 
usually easier for experts to estimate than 
diagnostic probabilities P(cause|symptoms).


