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Exact Inference

• Group the hidden variables H into H1 and H2 in which we 
want to marginalize over H2 to find the posterior over H1

• Thus our most general inference problem involves 
evaluation of

• For a M-state discrete units there are             terms in the 
summation where |H2 | is the number of hidden nodes

• Can easily become computationally intractable

• Can we exploit the conditional independence structure 
(missing links) to find more efficient algorithms?
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Example

• Goal: find

• Direct evaluation gives

where, for variables having M states, the denominator 
involves summing over ML-1 terms (exponential in the 
length of the chain)
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Example (cont’d)

• Using the conditional independence structure we can re-
order the summations in the denominator to give

which involves              summations (linear in the length 
of the chain) – similarly for the numerator

• Can be viewed as a local message passing algorithm
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Belief Propagation

• Extension to general tree structured graphs

• Involves passing one message in each direction across 
every link

• Exact solution in time linear in size of graph
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Example: Hidden Markov Model

• Inference involves one forward and one backward pass

• Computational cost grows linearly with length of chain
• Similarly for the Kalman filter
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Junction Tree Algorithm

• An efficient exact algorithm for a general graph

• Applies to both directed and undirected graphs

• Compiles the original graph into a tree structure and then 
performing message passing on this tree
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Junction Tree Algorithm (cont’d)

• Key steps:

1. Moralize

2. Absorb evidence

3. Triangulate

4. Construct junction tree of cliques

5. Pass messages to achieve consistency
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Moralization

• There are algorithms which work with the original 
directed graph, but these turn out to be special cases of 
the junction tree algorithm

• In the JT algorithm we first convert the directed graph 
into an undirected graph – directed and undirected 
graphs are then treated using the same approach

• Suppose we are given a directed graph with a 
conditionals                   and we wish to find a 
representation as an undirected graph
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Moralization (cont’d)

• The conditionals                   are obvious candidates as 
clique potentials, but we need to ensure that each node 
belongs in the same clique as its parents

• This is achieved by adding, for each node, links 
connecting together all of the parents
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Moralization (cont’d)

• Moralization therefore consists of the following steps:

1. For each node in the graph, add an edge between all 
parents of the node and then convert directed edges 
to undirected edges

2. Initialize the clique potentials of the moral graph to 1

3. For each local conditional probability             
choose a clique C such that C contains both Xi and 
pai and multiply       by

• Note that this undirected graph automatically has a 
normalization factor
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Moralization (cont’d)

• By adding links we have discarded some conditional 
independencies

• However, any conditional independencies in the moral 
graph also hold for the original directed graph, so if we 
solve the inference problem for the moral graph we will 
solve it also for the directed graph
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Absorbing Evidence

• The nodes can be grouped into visible V for, which we 
have particular observed values            , and hidden H

• We are interested in the conditional (posterior) probability

• Absorb evidence simply by altering the clique potentials 
to be zero for any configuration inconsistent with
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Absorbing Evidence (cont’d)

• We can view                 

as an un-normalized version of

and hence an un-normalized version of 
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Local Consistency

• As it stands, the graph correctly represents the (un-
normalized) joint distribution                       but the clique 
potentials do not have an interpretation as marginal 
probabilities

• Our goal is to update the clique potentials so that they 
acquire a local probabilistic interpretation while 
preserving the global distribution
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Local Consistency (cont’d)

• Note that we cannot simply have 

with                                 

as can be seen by considering the three node graph

• Here
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Local Consistency (cont’d)

• Instead we consider the more general representation for 
undirected graphs including separator sets, then we have
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Local Consistency (cont’d)

• Starting from our un-normalized representation of 
in terms of products of clique potentials, 

we can introduce separator potentials initially set to unity

Note that nodes can appear in more than one clique, and 
we require that these be consistent for all marginals

• Achieving consistency is central to the junction tree 
algorithm
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Local Consistency (cont’d)

• Consider the elemental problem of achieving consistency 
between a pair of cliques V and W, with separator set S

• Initially

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Local Consistency (cont’d)

• First construct a “message” at clique V and pass to W

• Since       is unchanged                , and so the joint 
distribution is invariant
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Local Consistency (cont’d)

• Next pass a message back from W to V using the same 
update rule 

• Here          is unchanged and so                     , and again 
the joint distribution is unchanged

• The marginals are now correct for both of the cliques and 
also for the separator 
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Local Consistency (cont’d)

• Example: return to the earlier three node graph

• Initially the clique potentials are                             and 
, and the separator potential

• The first message pass gives the following update

which are the correct marginals
• In this case the second message is vacuous
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Local Consistency (cont’d)

• Now suppose that node A is observed (for simplicity 
consider nodes to be binary and suppose A=1)

• Absorbing the evidence involves altering the potential 
by setting the A=0 row to zero

• Summing over A gives 

• Updating the             potential gives
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Local Consistency (cont’d)

• Hence the potentials after the first message pass are 

• Again the reverse message is vacuous

• Note that the resulting clique and separator marginals 
require normalization (a local operation)
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Global Consistency

• How can we extend our two-clique procedure to ensure 
consistency across the whole graph?

• We construct a clique tree by considering a spanning tree 
linking all of the cliques which is maximal with respect to 
the cardinality of the intersection sets

• Next we construct and pass messages using the 
following protocol: 

– a clique can send a message to a neighbouring clique 
only when it has received messages from all of its 
neighbours
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Global Consistency (cont’d)

• In practice this can be achieved by designating one 
clique as root and then 

– (i) collecting evidence by passing messages from the 
leaves to the root

– (ii) distributing evidence by propagating outwards from 
the root to the leaves
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One Last Issue

• The algorithm discussed so far is not quite sufficient to 
guarantee consistency for an arbitrary graph

• Consider the four node graph here, together with a 
maximal spanning clique tree

• Node C appears in two places and there is no guarantee 
that local consistency for P(C) will result in global 
consistency
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One Last Issue (cont’d)

• The problem is resolved if the tree of cliques is a junction 
tree, i.e. if for every pair of cliques V and W all cliques on 
the (unique) path from V to W contain V W (running 
intersection property)

• As a by-product we are also guaranteed that the (now 
consistent) clique potentials are indeed marginals
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One Last Issue (cont’d)

• How do we ensure that the maximal spanning tree of 
cliques will be a junction tree?

• Result: a graph has a junction tree if, and only if, it is 
triangulated, i.e. there are no chordless cycles of four or 
more nodes in the graph

• Example of a graph and its triangulated counterpart
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Summary of Junction Tree Algorithm

• Key steps:

1.Moralize

2.Absorb evidence

3.Triangulate

4.Construct junction tree

5.Pass messages to achieve consistency
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Example of JT Algorithm

• Original directed graph
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Example of JT Algorithm (cont’d)

• Moralization
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Example of JT Algorithm (cont’d)

• Undirected graph
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Example of JT Algorithm (cont’d)

• Triangulation
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Example of JT Algorithm (cont’d)

• Junction tree
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Limitations of Exact Inference

• The computational cost of the junction tree algorithm is 
determined by the size of the largest clique

• For densely connected graphs exact inference may be 
intractable

• There are 3 widely used approximation schemes

– Pretend graph is a tree: “loopy belief propagation”

– Markov chain Monte Carlo (e.g. Gibbs sampling)

– Variational inference
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Overview of Part Two

• Exact inference and the junction tree

• MCMC

• EM algorithm

• Variational methods
• Example

• General variational inference engine
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MCMC

• Eventual goal is to evaluate averages of functions

where           is typically the posterior distribution of (some
subset of) the hidden variables
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MCMC (cont’d)

• Sampling methods aim to draw a sample of K points   
from the distribution            and then to approximate the 
expectation by a finite sum

• This has the correct mean                   and variance

which is independent of dimensionality 

• We can achieve excellent accuracy for small values of K

• However, this assumes sample points are independent!
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MCMC (cont’d)

• Gibbs sampling samples each variable in turn using its 
conditional distribution conditioned on the other variables

• Not limited to conjugate-exponential distributions

• For graphical models, these conditional distributions 
depend only on the variables in the Markov blanket

• Software implementation: BUGS (Spiegelhalter et al.)
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MCMC (cont’d)

• The problem with Gibbs sampling is that successive 
points are highly correlated

• In this example it takes of order             steps to generate 
independent samples (random walk)

X
1

X
2

L

l
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Learning in Graphical Models

• Introduce parameters                             which govern the 

conditional distributions                       in a directed graph, 

or clique potentials                      in an undirected graph

• Maximum likelihood: determine          by

• Problem: the summation over H inside the logarithm may 
be intractable
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Expectation-maximization (EM) Algorithm

• E-step: evaluate the posterior distribution                    
using current estimate         for the parameters

• M-step: re-estimate    by maximizing the expected 
complete-data log likelihood

• Note that the log and the summation have been 
exchanged – this will often make the summation tractable

• Iterate E and M steps until convergence
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EM Example: Mixtures of Gaussians
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM Example: Mixtures of Gaussians (cont’d)
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EM: Variational Viewpoint

• For an arbitrary distribution               we have

where

• Kullback-Leibler divergence satisfies              
with equality if and only if

• Hence               is a rigorous lower bound on the log 
marginal likelihood
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EM: Variational Viewpoint (cont’d)

ln ( )P V |θ
�

( , )Q θ

KL( || )Q P
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EM: Variational Viewpoint (cont’d)

• If we maximize              with respect to a free-form Q 
distribution we obtain 

which is the true posterior distribution

• The lower bound then becomes

which, as a function of   is the expected complete-data 
log likelihood (up to an additive constant)
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EM: Variational Viewpoint (cont’d)

ln ( )P V |θ ln ( )P V |θ ln ( )P V |θ

KL( || )Q P

KL

�
( , )Q θ

�
( , )Q θ�

( , )Q θ
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Generalizations of EM

• What if the M-step is intractable?

– Use non-linear optimization to increase               w.r.t. 

• What if the E-step is intractable?

– Perform a partial optimization of               w.r.t. Q
– e.g. define a parametric family 

– An alternative approach will be discussed later
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Variational EM

ln ( )P V |θ ln ( )P V |θ ln ( )P V |θ

KL( || )Q P KL

�
( , )Q θ

�
( , )Q θ

�
( , )Q θ
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Bayesian Learning

• Introduce prior distributions over parameters 

• Equivalent to graph with additional hidden variables

• Learning becomes inference on the expanded graph

• No distinction between variables and parameters
• No M-step, just an E-step

• Example: mixture of Gaussians



11

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Variational Inference

• We have already seen that the posterior distribution may 
be approximated by maximizing a lower bound 

• For a suitable choice of                 this summation may be 
tractable even though

is not
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Variational Inference (cont’d)

• The goal is to choose a sufficiently simple family of 
distributions                that           can be evaluated

• However, the family should also be sufficiently rich that a 
good approximation to the true posterior can be obtained

• One possibility is to use a parametric family of 
distributions
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Variational Inference (cont’d)

• Here we consider an alternative approach based on the 
assumption that           factorizes with respect to subsets 
of nodes

where we leave the conditioning on V implicit

• Substituting into          and dissecting out the contribution 
from              we obtain
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Variational Inference (cont’d)

• We recognize this as the negative KL divergence 
between             and an effective distribution given by

• Hence if we perform a free-form optimization over 
we obtain
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Variational Inference (cont’d)

• This is an implicit solution which depends on all

• Hence we initialize the factors             and then cyclically 
update to convergence

• For conjugate-exponential choices of the conditional 
distributions                    in the directed graph, the 
solutions for              will have closed form
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Overview of Part Two

• Exact inference and the junction tree

• MCMC

• Variational methods and EM

• Example
• General variational inference engine
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Examples of Variational Inference

• Hidden Markov models (MacKay)

• Neural networks (Hinton)

• Bayesian PCA (Bishop)

• Independent Component Analysis (Attias)
• Mixtures of Gaussians (Attias; Ghahramani and Beal)

• Mixtures of Bayesian PCA (Bishop and Winn)

• Flexible video sprites (Frey et al.)

• Audio-video fusion for tracking (Attias et al.)

• Latent Dirichlet Allocation (Jordan et al.)

• Relevance Vector Machine (Bishop and Tipping)

• …
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Illustration: Relevance Vector Machine (RVM)

• Limitations of the support vector machine (SVM):

– Two classes

– Large number of kernels (in spite of sparsity)

– Kernels must satisfy Mercer criterion
– Cross-validation to set parameters C (and � )

– Decisions at outputs instead of probabilities
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Illustration: RVM (cont’d)

• The Relevance Vector Machine (Tipping, 1999) is a 
probabilistic regression or classification model 

• Alternative to SVM, not a Bayesian interpretation of SVM
• Properties

– Comparable error rates to SVM on new data
– Comparable training speeds
– No cross-validation to set parameters C (and � )
– Applicable to wide choice of basis function
– Multi-class classification
– Probabilistic outputs
– Dramatically fewer kernels

• Original RVM based on type II maximum likelihood –
here we consider a variational treatment
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Illustration: RVM (cont’d)

• Linear model as for SVM

• Input vectors                and targets

• Regression

• Likelihood function
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Illustration: RVM (cont’d)

• Gaussian prior for        with hyper-parameters 

• Gamma hyper-priors over    and
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Illustration: RVM (cont’d)

• Graphical model representation
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Illustration: RVM (cont’d)

• Variational posterior distribution 

• Analytical solutions for optimum factors
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Illustration: RVM (cont’d)

• Sufficient statistics given by
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Illustration: RVM (cont’d)

• Moments given by

where the di-gamma function is defined by
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Illustration: RVM (cont’d)

• A high proportion of         are driven to large values in the 
posterior distribution, giving a sparse model
Lower bound    can also be evaluated explicitly

• Variational treatment can be extended to classification
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Illustration: RVM (cont’d)

• Synthetic data: noisy sinusoid
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Illustration: RVM (cont’d)
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• Synthetic data: noisy sinusoid
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Sparsity

D
D0

P D( )
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Illustration: RVM (cont’d)

• Classification example

• 100 training points and 150 test points from Ripley's 
synthetic data set

• Gaussian kernels, with width parameter optimized for the 
SVM classifier by 5-fold cross-validation
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Illustration: RVM (cont’d)

• Results from SVM
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Illustration: RVM (cont’d)

• Results from VRVM
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Illustration: RVM (cont’d)

• Summary of results on Ripley data (Bayes error rate 8%)

49.2%VRVM

3810.6%SVM

No. kernelsErrorModel
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Illustration: RVM (cont’d)

• Additional regression results

39.0142.87.468.04Boston Housing

11.5106.50.01640.0202Friedman #3

6.9110.335054140Friedman #2

59.4116.62.802.92Friedman #1

RVRSVRRVRSVR

KernelsErrors
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Illustration: RVM (cont’d)

• Additional classification results

5.1%
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RVM
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SVM
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RVMGPGPSVM

KernelsErrors

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

Overview of Part Two

• Exact inference and the junction tree

• MCMC

• Variational methods and EM

• Example
• General variational inference engine
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General Variational Framework

• Currently for each new model we have to derive the 
variational update equations and then subsequently we 
write application-specific code to find the solution

• Can we build a general-purpose inference engine which 
automates these procedures?
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VIBES

• Variational Inference for Bayesian Networks

• Bishop, Spiegelhalter and Winn (1999)

• A general inference engine using variational methods

• VIBES will be made available on the WWW
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VIBES (cont’d)

• A key observation is that in the general solution

the update for a particular node (or group of nodes) 
depends only on other nodes in the Markov blanket

• Permits a local object-oriented implementation which is 
independent of the particular graph structure
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VIBES (cont’d)
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VIBES (cont’d)

Christopher M. Bishop NATO ASI: Learning Theory and Practice, Leuven, July 2002

VIBES (cont’d)
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Summary of Part Two

• Exact inference algorithms can be formulated in terms of 
graphical manipulations (the junction tree)

• Bayesian learning is just inference on an expanded graph 

• Variational methods provide a powerful semi-analytical 
tool for approximate inference in graphical models
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