

Bayes Theorem

 • From the product rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

 • From the sum rule, the denominator can be written

 $P(A) = \sum_{B} P(A|B)P(B)$

 Christopher M. Bishop

NATO ASI: Learning Theory and Practice, Leuven, July 2002

Directed Acyclic Graphs (cont'd)

General factorization

$$P(X_1,\ldots,X_d) = \prod_{i=1}^d P(X_i|\mathsf{pa}_i)$$

where $\mathbb{P}^{\underline{a}_i}$ denotes the parents of i

- Missing links imply conditional independencies
- Model specified by graph and by conditional probabilities
- Ancestral simulation can be used to sample from the joint distribution
- If a variable with no children is unobserved it can be removed from the graph to obtain a marginal distribution

NATO ASI: Learning Theory and Practice, Leuven, July 2002

Christopher M. Bishop

Importance of Ordering

Christopher M. Bishop

Christopher M. Bishop

Markov Properties	
 Can we determine the conditional independence properties of a distribution directly from its graph? Yes: "d-separation" Start by considering three simple examples 	
Christopher M. Bishop	NATO ASI: Learning Theory and Practice, Leuven, July 2002

Christopher M. Bishop

$$P(X) = \frac{1}{Z} \prod_{C} \psi_{C}(X_{C})$$

where $\psi_C(X_C)$ are the *clique potentials*, and *Z* is a normalization constant

Christopher M. Bishop

Example: Markov Random Field

• Application to image super-resolution (Freeman et al.)

Viewgraphs and tutorials available from:

research.microsoft.com/~cmbishop