
Lecture 4

Introduction to Modelling and Learning

• We look at two of the simplest forms of learning,
proportions and polynomials.

• These also serve to illustrate some basic
principles.
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Overview
• Example learning and inference for “Visit to

Asia” graph
We’ll put some data through B-Course and look at
the results. More data lead to better results.

• Probability prerequisites

• Learning a proportion

• Learning a polynomial
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The Abstraction of Continuity

• Nothing is continuous in the real world. All
data is gathered with A-D converters, all
measurements discrete. Physics presents a
continuous abstraction of a discrete world.

• You are in a lighthouse at night and expect a
ship to travel on a straight shipping lane past
you. Typically modelled with a Cauchy.

1. Measurements assumed to infinite precision.
2. Model assumes path is linear and infinite in both

directions, i.e., off towards Pluto.
3. Typical prior assumes equally likely to be anywhere on

the line, e.g., in the phi-delta-kappa galaxy.
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Prior Knowledge

Suppose you are predicting whether someone has a
thyroid problem based on factors such as age, sex,
pregnancies, blood levels of hormones, etc.

• If you use logistic regression or depth 4 decision
tree as your predictive distribution, does it mean
the “truth” follows these restrictions?

• In practice you may know many things:
– Incidence increases with age and certain hormone levels.
– Incidence quiet rare.
– Hormone levels modify dramatically during pregnancy.
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What are the outcome
proportions?

With this irregular 4-sided
die, what are the outcome
probabilities?

1

3
2

• Each outcome is reasonably likely.
• Wont be uniform.
• Are larger sides more or less likely?
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Models for Learning

Probability of sample of size N as a vector of
data ~x, given model M and parameters θ (possibly
a vector), assuming independently and identically

distributed (i.i.d.) data:

p(~x |θ ,M ) = ∏
i=1,...,N

p(xi |θ ,M )

For prediction, one has output variables too, ~y.

p(~x,~y |θ ,M ) = ∏
i=1,...,N

p(xi,yi |θ ,M )

p(~y |~x,θ ,M ) = ∏
i=1,...,N

p(yi |xi,θ ,M ) conditional model
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Models for Learning, cont.
We’ll look at methods for the conditional model.
Some methods are based on the probability model
being “truth” (ha ha!):

maximum likelihood (ML): maximize log p(~y |~x,θ ,M )
maximum a posterior (MAP): maximize log p(θ |~x,~y,M )
evidence: maximize for k from multiple models Mk,

log p(~x |~y,Mk)

Other methods are based on optimizing a “cost”
measure for each prediction, done empirically
without the probability model: minimum error,
minimum squared error, half Brier score, Hellinger
distance, . . . , e.g., Let fθ(xi) be the model’s
prediction for yi, then optimize for θ

∑
i=1,...,N

distance(yi, fθ(xi))
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Why care about Proportions?

• Many statistic problems have learning
proportions as an inner loop,

e.g., decision trees, hidden Markov models, Bayesian

networks with simple probability tables, variable

length n-grams, i.e., basic core of best performing

general compression algorithms, . . .

• Reflects most of the major techniques used.
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Likelihood for Proportions

Have a variable xi taking on K outcomes,
1, . . . ,K. Model is discrete distribution with outcome
probabilities θ1, . . . ,θK, which sum to 1.

p(~x |θ ,M ) = ∏
i=1,...,N

p(xi |θ ,M )

Summarize the N data by n1, . . . ,nK the count for
each outcome.

log p(~x |θ ,M ) = ∑
k=1,...,K

nk logθk

Sometimes exclude ordering information, getting a
multinomial, which adds the term logCN

n1,...,nK
for

CN
n1,...,nK

= ∏
k=1,...,K

nk!

/

N!
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Maximum Likelihood
Parameters

To maximize, add Lagrange multiplier term:

∑
k=1,...,K

nk logθk +λ

(

1− ∑
k=1,...,K

θk

)

and optimize for θ1, . . . ,θK setting λ to make the
constraint 1 = ∑k=1,...,K θk hold.

Differentiation w.r.t. θk and setting to zero yields
nk/θk = λ . Thus λ = N and

θ̂k =
nk

N
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Maximum A Posterior Params

The Bayesian method requires a prior. It is only
simple when the prior is the same functional form
as the likelihood. This form is a called a Beta(α1,α2)
distribution for K = 2 and a Dirichlet(α1, . . . ,αK)
distribution for K > 2.

log p(θ |M ) = ∑
k=1,...,K

(αk−1) logθk + constant

Similarly, the maximum a posterior parameters
become (for α0 = ∑k=1,...,K αk):

θ̂k =
nk +αk−1
N +α0−K

The mean parameters:

Expecθ |~x,M (θk) =
nk +αk

N +α0
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Prior Probabilities for Binary
Proportions

Beta prior:
∝ pα1−1(1− p)α2−1

Entropic prior:
∝ pβ p(1− p)β (1−p)

= e−β I(p)
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Prior Probabilities for Binary
Proportions

Beta prior:
∝ pα1−1(1− p)α2−1

Entropic prior:
∝ pβ p(1− p)β (1−p)

= e−β I(p)

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

Li
ke

lih
oo

d

Proportion

Entropic 1
Beta 0.02,0.18

Beta 0.1,0.9
Beta 0.2,1.8
Beta 0.5,4.5

Beta 1.5,13.5

c©Wray Buntine and Petri Myllymäki - 14 - November 21, 2003



Prior Probabilities for 50-way
Proportions

Beta prior:
∝ ∏i=1,...,50 pαi−1

i

Entropic prior:

∝ ∏i=1,...,50 pβ pi
i

= e−β I(p)

Sample from
the distribution
and place 50
probabilities in
increasing order.
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Prior Probabilities for 50-way
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i

Entropic prior:

∝ ∏i=1,...,50 pβ pi
i

= e−β I(p)

Sample from
the distribution
and place 50
probabilities in
increasing order.
Plot order to
logarithmic scale
(i.e., Zipf’s law).
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Interacting with the Models

Playing with the BetaCoinExperiment demo shows
the following:

• Results sensitive for N < 20.
• Posterior curve starts quite broad and narrows

slowly as N increases, in fact standard deviation
is order 1/

√
N.

• Most concavity disappears by N = 1,2.

A good statistical text shows the posterior standard
deviation for K = 2 is:

√

(n1 +α1)(n2 +α2)

(N +α0)2(N +α0 +1)
≈

√

θ̂1θ̂2

N
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History
• Great volumes have been written about supposed

“objective” or “reference” priors for this task.
• Maximum Likelihood corresponds to αk = 1. So-called

Laplace Correction corresponds to using the means for
this value.

• So-called Jeffreys’ Method corresponds to using αk = 0.5.
This is an approximate minimax method, as used by the
minimum description length and theory communities.

• So-called Zipf’s Law has that a plot of the log probabilities
against log rank (rank equals order in a sort) should be
approximately linear. Used for word probabilities.

• No methods work uniformly well.
• In practice people use biased parameters and set α0 using

variance arguments, cross validation, or such.
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Linear Regression

Our interest in the problem is primarily to look at
overfitting, and to consider effects of the priors and
posteriors. The detail of the math. is not critical.
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Linear Regression

p(σ) p(θ |σ)
1

(√
2πσ

)N e
− 1

2σ2 ∑N
i=1

(

yi−∑M
j=1 θ jbasis j(x.,i)

)2
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Linear Regression, Maximum
Likelihood

log p(~y |~x,θ ,σ ,M )

= N logσ − 1
2σ 2

N

∑
i=1

(

yi−
M

∑
j=1

θ jbasis j(x.,i)

)2

+ constant

= N logσ − 1
2σ 2

(

N

∑
i=1

y2
i −

M

∑
j,k=1

SS j,k
θ jθk

2σ 2 +
M

∑
j=1

m j
θ j

2σ 2

)

+ ...

where SS j,k =
N

∑
i=1

basis j(~xi)basisk(~xi)

and m j =
N

∑
i=1

yibasis j(~xi)
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Linear Regression, ML cont

• Once again, we see the data is summarized by
statistics, in this case: ~SS,~m,y2.

• This property happens for many common
distributions taught in statistics, the Exponential
Family, includes Poisson, Gamma, Inverse
Gamma, multinomial, ...

• The problem now looks like a Gaussian on θ and
an inverse Gamma on σ .

ysqq

σθ
Inverse GammaGaussian

S
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Linear Regression, ML cont
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Linear Regression, ML cont

• This phenomena is called overfitting.
• As a rough rule of thumb, models require a

sample size of at least 10 ∗ K where K is the
dimension of the parameter set. Otherwise,
things become difficult.

• As before, the easiest Bayesian approach is to
make the prior look the same as the likelihood,
and we just hope that this makes some sense.

p(θ ,σ) ∝
1

σ a e−(θ †Cθ+b)/σ2

In this case its not too bad.
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Linear Regression, Prior on θ
With clever choice of the prior covariance matrix on
θ (C in previous slide), our prior can generate lines
like on the right. The left is uniform in θ for 50
degree Legendre polynomials. Is the right better?
That is subjective!
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Linear Regression, sampling

To get a better idea of whats happening, we really
need to measure the uncertainty in our predictions
somehow. One way is to estimate the posterior
standard deviation (so-called ”error bars”) and
display it. Another is to sample from the posterior
and look at the range of curves displayed. We do
that next.

• You’ll see the range is tight when there are
inadequate parameters for the model.

• And loose in those places where data is sparse.
• Of course, which looks best also depends on

resultant error you expected in measurements.
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Linear Regression, sampling
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Next Week

• Review the material in B-Course’s library.
• Play with some data on B-Course.
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