

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

582364 Data mining, 4 cu Lecture 7: Sequential Patterns

Spring 2010 Lecturer: Juho Rousu Teaching assistant: Taru Itäpelto

Sequential Patterns

- In many data mining tasks the order and timing of events contains important information
 - Credit card usage profile (10.4 €0, 11.4 €1000 12.4
 €1500, ..)
 - Travel plan (Road E75 for 100km, Road 24 for 25km, Road 313 for 5km)
 - Process monitoring (Warning X at 1am, Crash Y at 2am,...)
- Frequent itemsets only capture the co-occurrences
 - No order between the items: {Bread, Milk} means the same as {Milk, Bread}
 - Order of transactions not considered: itemset support is a sum over a set of transactions

Sequence Data

- Each row ('transaction') records occurrences of events associated with a particular object at a given time
- Sorting the transactions using the timestamp, gives a sequence for each object with elements given by the collection of events ('items')

	Object	Timestamp	Events		
	А	10	2, 3, 5		
	А	20	6, 1		
	А	23	1		
	В	11	4, 5, 6		
	В	17	2		
	В	21	7, 8, 1, 2		
	В	28	1, 6		
	С	14	1, 8, 7		
n	neline + + + + + + + + + + + + + + + + + +				
Di	ect A:				

Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

Sequence of books checked out at a library:

<{Introduction to Data Mining} {Fellowship of the Ring} {The Two Towers, Return of the King}>

- Sequence of initiating events leading to the Three-Mile Island Nuclear Accident:
- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

A sequence is an ordered list of elements (transactions)

 $s = \langle e_1 e_2 e_3 \dots \rangle$

Each element contains a collection of events (items)

 $e_i = \{i_1, i_2, ..., i_k\}$

- Each element is attributed to a specific time or location
- Two different measures of the 'size' of the sequence:
 - Length of a sequence, |s|, is given by the number of elements of the sequence
 - A k-sequence is a sequence that contains k events (items)
 - Below: a 8-sequence of length 5

Examples of Sequence Data

Sequence Database	Sequence	Ordering by	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	Time	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	Time	A collection of files/ frames viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a sensor	Time	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	Adjacency in the sequence	An element in the DNA sequence	Bases A,T,G,C
Journey planner	Public transport from A to B at time T	Time and Location	Using vehicle type X between two stops	Entering vehicle, exiting vehicle

- In sequential data mining, the central concept is a subsequence
- A subsequence is *contained* in a sequence it can be obtained from the original sequence by removing events or elements from it
- Formally, a sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i1}, ..., a_n ⊆ b_{in}
 Example:

- In sequential data mining, the central concept is a subsequence
- Intuitively, a subsequence is contained in a sequence if it can be obtained from the original sequence by removing events or elements from it
- Formally, a sequence $\langle a_1 a_2 \dots a_n \rangle$ is *contained* in another sequence $\langle b_1 b_2 \dots b_m \rangle$ (m \geq n) if there exist integers

 $i_1 < i_2 < \ldots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

Sequential Pattern Mining

- Consider data set D that contain one or more data sequences
- Each data sequence relates to a particular object (e.g. on the right: A,B or C)
- The support of a sequence s is the fraction of all data sequences that contain s.
- Sequence s is a *frequent sequence* if it is support is greater than userdefined level *minsup*

Object	Timestamp	Events
А	10	2, 3, 5
А	20	6, 1
А	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup*

Task:

■ Find all subsequences with support ≥ *minsup*

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Minsup = 50%			
Examples of Fr	Examples of Frequent Subsequences:		
< {1,2} >	s=60%		
< {2,3} >	s=60%		
< {2,4}>	s=80%		
< {3} {5}>	s=80%		
< {1} {2} >	s=80%		
< {2} {2} >	s=60%		
< {1} {2,3} >	s=60%		
< {2} {2,3} >	s=60%		
< {1,2} {2,3} >	s=60%		

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

 $\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$

How many k-subsequences can be extracted from a given nsequence?

• i.e. how many different ways there is to select 4 items out of 9

Answer:

$$\binom{n}{k} = \binom{9}{4} = 126$$

Exponential number in the number of items, as in itemset mining!

Sequential Pattern Mining: Challenge

- Number of candidate subsequences is even higher than the number of itemsets for the same set of items (events):
 - An item can appear only once in each itemset, but an event can appear several times in the same sequence (though not in the same element (transaction)
 - Order of items in a sequence does matter so all permutations
 - of elements are considered different
 - Example:
 - 2-itemset {a,b}
 - possible 2-sequences of from the same items:

 $<\!\!\{a\},\!\{a\}\!\!>,\!<\!\!\{a\}\!\{b\}\!\!>,\!<\!\!\{b\}\!\{a\}\!\!>,\!<\!\!\{b\}\!\{b\}\!\!>,\!<\!\!\{a,b\}\!\!>$

possible sequences of length two: <{a},{a}>,<{a}{b}>,<{b}{a}>,<{b}{a}>,<{b}{a}>,<{b}{a}>,<{a,b},{a}>,<{a,b}{b}>,<{a,b},{a,b}>,<{a}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}{a,b}>,<{b}

Sequential Pattern Mining: Challenge

- Consider level-wise candidate generation to find all frequent subsequences (1-sequences, 2-sequences, 3-sequences,...)
- Given n events (items), we get
- Candidate 1-subsequences:

 $<\{i_1\}>, <\{i_2\}>, <\{i_3\}>, \dots, <\{i_n\}>$

- Candidate 2-subsequences:
 - $<\{i_1, i_2\}>, <\{i_1, i_3\}>, \dots, <\{i_{n-1}, i_n\}>,$
 - $\{i_1\} \{i_1\} >, \{i_1\} \{i_2\} >, \dots, \{i_n\} \{i_n\} >$
- Candidate 3-subsequences: $\langle i_1, i_2, i_3 \rangle$, ..., $\langle i_{n-2}, i_{n-1}, i_n \rangle$, $\langle i_1, i_2 \rangle$ $\{i_1 \rangle$,..., $\langle i_{n-1}, i_n \rangle$ $\{i_n \rangle$, $\langle i_1 \rangle$, $\{i_1, i_2 \rangle$,..., $\langle i_n \rangle$, $\{i_{n-1}, i_n \rangle$, ..., $\langle i_1 \rangle$, $\{i_1 \rangle$, $\{i_1 \rangle$, $\{i_1 \rangle$,..., $\langle i_n \rangle$, $\{i_n \rangle$, $\{i_n \rangle$
- Considerably more than the number of candidate itemsets for the same number of items!

Apriori principle for sequences

All subsequences of a frequent sequence are frequent

Easy to see:

- if a data sequence of an arbitrary object A contains sequence s, it also contains any subsequence t of s
- each data sequence that contains s adds to the support counts of s and t
- We can modify Apriori to work on the sequential patterns

Apriori approach for Sequential Pattern Mining

- Step 1:
 - Make the first pass over the sequence database D to yield all frequent 1-subsequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)*th* pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate *k*-sequences that contain infrequent (*k-1*)- subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate generation in sequential Apriori

- Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce three candidate 2-sequences: $<\{i_2\}\{i_1\}>, <\{i_1\}\{i_2\}>$ and $<\{i_1, i_2\}>$
- For k>2 the algorithm checks whether the sequences can be superimposed so that the 'middle' part is shared
 - let (k-1)-subsequence s₁ be the suffix of f₁ obtained by dropping the first event and let (k-1)-subsequence p₁ be the prefix of f₂ obtained by dropping the last event of f₂
 - if $p_2 = s_1$, f_1 is merged with f_2
 - <{1}{2}{3}> and <{2}{3}{4} can be merged into <{1}{2}{3}{4}>
 - $\{1,5\}$ and $\{5\}$ and $\{3,4\}$ can be merged into $\{1,5\}$ and $\{3,4\}$
 - <{1}{2}{3}> and <{1}{2}{5}} cannot be merged

- The element structure of the middle part of the merged sequence is the same as the element structure in both s₁ and s₂.
- First element of the merged sequence will be the first element of the first sequence
- Last element of the merged sequence will be the last element of the second sequence
- e.g.
 - - $<{1}{2}{3,4}>, <{1,2}{3}{4}>,...$ not generated this way,
 - $<{1,5}{3}> and {5}{3,4}} are merged into {1,5}{3,4}>$
 - <{1}{5}{3,4}>, <{1,5}{3}{4}>,<{1}{5}{3}{4}>,... not generated this way

Completeness of candidate generation

- Are all candidates generated by this approach?
- Given an arbitrary frequent k-sequence s = <E₁,...,E_L> of length L the two frequent k-1 sequences s₁ and s₂ that are merged to produce s are the following

Case k = 2: two subcases based on the structure of s:

■ If $s = \langle i,j \rangle$ we have $s_1 = \langle i \rangle$, $s_2 = \langle j \rangle$

■ If s = <{i}{j} we also have $s_1 = <{i}>, s_2 = <{j}>$

- Case k > 2:
 - If E_1 contains more than one event $s_1 = \langle E_1, ..., E_{L-1}, E' \rangle$, where E' is obtained from E_1 by dropping the last event, otherwise $s_1 = \langle E_1, ..., E_{L-1} \rangle$
 - If E_1 contains more than one event $s_2 = \langle E^2, ..., E_L \rangle$, where E^2 is obtained from E_1 by dropping the first event, otherwise $s_2 = \langle E_2, ..., E_L \rangle$

Candidate pruning & support counting

- Analogous principle to itemset Apriori
- Given a candidate k-sequence, we check if any of the k-1 subsequences are infrequent:
- e.g. 4-sequence <{1}{2}{3}{4}>
 - we know that <{1}{2}{3}> and <{2}{3}{4}> are frequent since they were used to generate the 4-sequence
 - we need to check is <{1}{2}{4}> and <{1}{3}{4}> are frequent
- If any infrequent subsequence is found the candidate is pruned
- Support counting is then performed for the remaining candidates and candidates below the *minsup* threshold are discarded

- In some applications, relative timing of the transactions is crucial to define the pattern
- e.g. Consider a credit card company wanting to mine unusual patterns in purchasing behavior:
 - A fraudulent user of the card could easily buy similar items as the normal users would do, so the sequence of transactions might not discriminate enough
 - But the fraudulent user would do the purchases in short time interval to make maximum use of the card before it is close
- Constraining the patterns in temporal dimension is required to mine such patterns

Web sequence:

- < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Probably interesting only if happens during a single session
- Sequence of initiating events leading to the Three-Mile Island Nuclear Accident:
- < {clogged resin} {outlet valve closure} {loss of feedwater}

{condenser polisher outlet valve shut} {booster pumps trip}

{main waterpump trips} {main turbine trips} {reactor pressure increases}>

Probably only relevant if all events happen within 24 hours

Credit card database:

<{Clothing Shop, 500€}{Jewellery shop, 500€}{Restaurant, 300€}>

Perhaps more alarming if happens *during a single day*

- We consider two kinds of constraints:
 - max-span constraint (m_s): maximum allowed time between the first element and the last element in the sequence
 - max-gap constraint (x_g): maximum length of a gap between two consecutive element

x_g: max-gap

m_s: maximum span

 Assume parameters: x_g = 2, n_g = 0, m_s= 4
 Consider the data assumeses

Consider the data sequences below with element time stamps 1,2,3,...

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No (x _g =3)
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No (m _s =5)

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify the mining process to prune candidates that violate timing constraints during candidate generation
 - Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
A	2	2,3
A	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

x_g = 1 (max-gap) m_s = 5 (maximum span) *minsup* = 60%

<{2} {5}> support = 40% but <{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint!

Contiguous Subsequences

- The non-monotonicity caused by the maxgap constraint can be circumvented by considering contiguous subsequences
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of
 - $< \{1\} \{2 \ 3\}>, < \{1 \ 2\} \{2\} \{3\}>, and < \{3 \ 4\} \{1 \ 2\} \{2 \ 3\} \{4\} >$
 - is not a contiguous subsequence of

 $< \{1\} \{3\} \{2\} > and < \{2\} \{1\} \{3\} \{2\} >$

- A k-1-sequence t is a contiguous subsequence of ksequence k if t can be constructed by
 - deleting events from the elements of s
 - while not allowing middle elements to get empty

Modified Sequential Apriori for timing constraints

- Modified Apriori principle: If a k-sequence is frequent, then all of its contiguous k-1-subsequences are frequent
- Modified algorithm:
 - Candidate generation step remains the same: we merge two frequent k-1 sequences that have the same middle part (excluding first and last event)
 - In Candidate pruning, we only need to verify contiguous k-1-sequences
 - e.g. Given 5-sequence <{1}{2,3}{4}{5}> we need to verify <{1}{2}{4}
 {5}>,<{1}{3}{4}{5}> and need not to verify <{1}{2,3}{5}>
 - In support counting need to check that maxspan constraint is not violated

Support of a sequential pattern

- Support of a sequential pattern is not as clear cut as itemset support, due to the repetition of the items in the data sequence
- Many choices, two most important are
 - One occurrence per object: 'Customer X has bought Bread and then Milk' in some *maxspan*=7-day interval
 - 2. One occurrence per sliding window: 'Customer X has bough Bread and then Milk in 7-day interval in five occasions'

Support of a sequential pattern

- Important: the baseline 'N' for determining the support depends on the counting method
 - One occurrence per object: N = the number of objects (e.g. Customers)
 - One occurrence per sliding window: N = the number of possible positions for the sliding window in all objects

Text mining

Text databases are an important form of sequential data

- News databases
- Blog archives
- Scientific journals and abstract databases
- Many tasks:
 - Text categorization
 - Concept/entity extraction,
 - Sentiment analysis,
 - Document summarization, etc.
- How can frequent pattern mining help?

Phrases in text

- Two general types of phrases can be defined:
- Syntactical phrases: governed by the grammar of the language
 - noun phrases: 'a green ball',
 - verb phrases: 'saw a ball'
 - ...not in the scope of this course
- Statistical phrases
 - frequent n-grams (frequent n-sequences of consecutive words) – basic tool in text analysis
 - frequent word sequences
 - of any length, gaps allowed
 - ...this we can do!

Finding frequent phrases in text

- The Congress subcommittee backed away from mandating specific retaliation against foreign countries for unfair foreign trade practices.
- 2. He urged Congress to reject provisions that would mandate U.S. retaliation against foreign unfair trade practices.
- 3. Washington charged France West Germany the U.K. Spain and the EC Commission with **unfair practices** on behalf of Airbus.
- Possible goal: find frequent phrases that capture topics among the documents

Finding frequent phrases

- The machinery for sequential pattern mining can be applied in principle
- We take documents as data sequences
 - Words as items (events),
 - Transactions (elements) consist of single words
 - Timestamp from the word order in the document
- Preprocessing phase is needed:
 - very common words are removed
 - some punctuation may be removed
 - numbers removed or converted
 - stemming
 - countries -> countr

- Word frequencies in 'Moby Dick': Top 20 words are 'stop words' i.e. generic words with little content
- Typical approach in text analysis is to remove such words

- Example Document: 'The Federal Reserve entered the U.S. Government securities market to arrange1.5 billion dlrs of customer repurchase agreements, a Fed spokesman said. Dealers said Federal funds were trading at 6- 3/16 pct when the Fed began its temporary and indirect supply of reserves to the banking system.'
- Maximal frequent sequences: federal reserve entered u.s. government securities market arrange repurchase agreements fed dealers federal funds trading fed began temporary supply reserves banking system (22 words)
- Paper #3: H. Ahonen-Myka: Finding all maximal frequent sequences in text. ICML-99 Workshop: Machine Learning in Text Data Analysis, 1999, pp. 11--17