582364 Data mining, 4 cu
 Lecture 7:
 Sequential Patterns

Spring 2010
Lecturer: Juho Rousu
Teaching assistant: Taru Itäpelto

Sequential Patterns

■ In many data mining tasks the order and timing of events contains important information

■ Credit card usage profile (10.4 €0, $11.4 € 100012.4$ €1500, ..)

- Travel plan (Road E75 for 100km, Road 24 for 25km, Road 313 for 5km)
- Process monitoring (Warning X at 1am, Crash Y at 2am,...)
\square Frequent itemsets only capture the co-occurrences
■ No order between the items: \{Bread, Milk\} means the same as \{Milk, Bread\}

■ Order of transactions not considered: itemset support is a sum over a set of transactions

Sequence Data

■ Each row ('transaction') records occurrences of events associated with a particular object at a given time
■ Sorting the transactions using the timestamp, gives a sequence for each object with elements given by the collection of events ('items')

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

Examples of Sequences

- Web sequence:
$<$ \{Homepage\} \{Electronics\} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
\square Sequence of books checked out at a library:
<\{Introduction to Data Mining\} \{Fellowship of the Ring\} \{The Two Towers, Return of the King\}>
■ Sequence of initiating events leading to the Three-Mile Island Nuclear Accident:
< \{clogged resin\} \{outlet valve closure\} \{loss of feedwater\} \{condenser polisher outlet valve shut\} \{booster pumps trip\} \{main waterpump trips\} \{main turbine trips\} \{reactor pressure increases\}>

Sequences Formally

- A sequence is an ordered list of elements (transactions)

$$
\mathrm{s}=\left\langle\mathrm{e}_{1} \mathrm{e}_{2} \mathrm{e}_{3} \ldots\right\rangle
$$

- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

- Each element is attributed to a specific time or location
- Two different measures of the 'size' of the sequence:
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)
- Below: a 8-sequence of length 5

Examples of Sequence Data

Sequence Database	Sequence	Ordering by	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	Time	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	Time	A collection of files/ frames viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a sensor	Time	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	Adjacency in the sequence	An element in the DNA sequence	Bases A,T,G,C
Journey planner	Public transport from A to B at time T	Time and Location	Using vehicle type X between two stops	Entering vehicle, exiting vehicle

Subsequences

■ In sequential data mining, the central concept is a subsequence
\square A subsequence is contained in a sequence it can be obtained from the original sequence by removing events or elements from it
\square Formally, a sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1} b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers
$i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 1}, \ldots, a_{n} \subseteq b_{\text {in }}$

- Example:

Example: Subsequences

- In sequential data mining, the central concept is a subsequence
- Intuitively, a subsequence is contained in a sequence if it can be obtained from the original sequence by removing events or elements from it
\square Formally, a sequence $<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $<b_{1} b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers
$\mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{n}}$ such that $\mathrm{a}_{1} \subseteq \mathrm{~b}_{\mathrm{i} 1}, \mathrm{a}_{2} \subseteq \mathrm{~b}_{\mathrm{i} 1}, \ldots, \mathrm{a}_{\mathrm{n}} \subseteq \mathrm{b}_{\text {in }}$

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{3,5\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes

Sequential Pattern Mining

■ Consider data set D that contain one or more data sequences

- Each data sequence relates to a particular object (e.g. on the right: A, B or C)
- The support of a sequence s is the

Object	Timestamp	Events
A	10	$2,3,5$
A	20	6,1
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$7,8,1,2$
B	28	1,6
C	14	$1,8,7$

- Sequence s is a frequent sequence if it is support is greater than userdefined level minsup

Sequential Pattern Mining: Task

■ Given:

- a database of sequences

■ a user-specified minimum support threshold, minsup
■ Task:

- Find all subsequences with support \geq minsup

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

```
Minsup = 50%
Examples of Frequent Subsequences:
< {1,2}> s=60%
<{2,3}> s=60%
< {2,4}> s=80%
< {3} {5}> s=80%
< {1}{2}> s=80%
< {2}{2}> s=60%
< {1}{2,3}> s=60%
< {2} {2,3}> s=60%
< {1,2}{2,3}> s=60%
```


Sequential Pattern Mining: Challenge

■ Given a sequence: < $\{\mathrm{ab}$ b $\{\mathrm{c} \mathrm{de} \mathrm{e}\}\{\mathrm{f}\}\{\mathrm{g} \mathrm{h} i\}$

- Examples of subsequences:

$$
<\{a\}\{c d\}\{f\}\{g\}>,<\{c d e\}>,<\{b\}\{g\}>, \text { etc. }
$$

- How many k-subsequences can be extracted from a given n sequence?
- i.e. how many different ways there is to select 4 items out of 9 Answer :

$$
\binom{n}{k}=\binom{9}{4}=126
$$

- Exponential number in the number of items, as in itemset mining!

Sequential Pattern Mining: Challenge

\square Number of candidate subsequences is even higher than the number of itemsets for the same set of items (events):

- An item can appear only once in each itemset, but an event can appear several times in the same sequence (though not in the same element (transaction)
- Order of items in a sequence does matter so all permutations of elements are considered different
- Example:
- 2-itemset \{a,b\}
- possible 2-sequences of from the same items:

$$
<\{a\},\{a\}>,<\{a\}\{b\}>,<\{b\}\{a\}>,<\{b\}\{b\}>,<\{a, b\}>
$$

$$
\{b\}>,<\{a, b\},\{a\}>,<\{a, b\}\{b\}>,<\{a, b\},\{a, b\}>,<\{a\}\{a, b\}>,<\{b\}\{a, b\}>
$$

Sequential Pattern Mining: Challenge

- Consider level-wise candidate generation to find all frequent subsequences (1-sequences, 2-sequences, 3-sequences,...)
■ Given n events (items), we get
■ Candidate 1-subsequences:

$$
<\left\{i_{1}\right\}>,<\left\{i_{2}\right\}>,<\left\{i_{3}\right\}>, \ldots,<\left\{i_{n}\right\}>
$$

■ Candidate 2-subsequences:

$$
\begin{aligned}
& <\left\{i_{1}, i_{2}\right\}>,<\left\{i_{1}, i_{3}\right\}>, \ldots,<\left\{i_{n-1}, i_{n}\right\}> \\
& <\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{2}\right\}>, \ldots,<\left\{i_{n}\right\}\left\{i_{n}\right\}>
\end{aligned}
$$

■ Candidate 3-subsequences: $<\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}\right\}>, \ldots,<\left\{\mathrm{i}_{n-2}, \mathrm{i}_{\mathrm{n}-1}, \mathrm{i}_{\mathrm{n}}\right\}>,<\left\{\mathrm{i}_{1}, \mathrm{i}_{2}\right\}$ $\left\{i_{1}\right\}>, \ldots,<\left\{i_{n-1}, i_{n}\right\}\left\{i_{n}\right\}>,<\left\{i_{1}\right\}\left\{i_{1}, i_{2}\right\}>, \ldots,<\left\{i_{n}\right\}\left\{i_{n-1}, i_{n}\right\}>, \ldots,<\left\{i_{1}\right\}\left\{i_{1}\right\}$ $\left\{i_{1}\right\}>, \ldots,<\left\{i_{n}\right\}\left\{i_{n}\right\}\left\{i_{n}\right\}>$

- Considerably more than the number of candidate itemsets for the same number of items!

Apriori principle for sequences

- All subsequences of a frequent sequence are frequent

■ Easy to see:
■ if a data sequence of an arbitrary object A contains sequence s, it also contains any subsequence t of s

- each data sequence that contains s adds to the support counts of s and t
■ We can modify Apriori to work on the sequential patterns

Apriori approach for Sequential Pattern Mining

- Step 1:
- Make the first pass over the sequence database D to yield all frequent 1 -subsequences
■ Step 2:
Repeat until no new frequent sequences are found
- Candidate Generation:
- Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
- Prune candidate k-sequences that contain infrequent $(k-1)$ subsequences
- Support Counting:
- Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
- Eliminate candidate k-sequences whose actual support is less than minsup

Sequential Apriori: Overview

Frequent 3-sequences
 $<\{1\}\{2\}\{3\}>$
 $<\{1\}\{25\}>$
 $<\{1\}\{5\}\{3\}>$
 $<\{2\}\{3\}\{4\}>$
 $<\{25\}\{3\}>$
 $<\{3\}\{4\}\{5\}>$
 $<\{5\}\{34\}>$

Candidate Generation

$$
\begin{aligned}
& <\{1\}\{2\}\{3\}\{4\}> \\
& <\{1\}\{25\}\{3\}> \\
& <\{1\}\{5\}\{34\}> \\
& <\{2\}\{3\}\{4\}\{5\}> \\
& <\{25\}\{34\}>
\end{aligned}
$$

Candidate Pruning
$<\{1\}\{25\}\{3\}>$

Candidate generation in sequential Apriori

- Merging two frequent 1-sequences < $\left\{i_{1}\right\}>$ and $<\left\{i_{2}\right\}>$ will produce three candidate 2-sequences: <\{i $\left.\mathrm{i}_{2}\right\}\left\{\mathrm{i}_{1}\right\}>,<\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{2}\right\}>$ and $<\left\{\mathrm{i}_{1}, \mathrm{i}_{2}\right\}>$
■ For k>2 the algorithm checks whether the sequences can be superimposed so that the 'middle' part is shared
$■$ let ($k-1$)-subsequence s_{1} be the suffix of f_{1} obtained by dropping the first event and let ($k-1$)-subsequence p_{1} be the prefix of f_{2} obtained by dropping the last event of f_{2}
- if $p_{2}=s_{1}, f_{1}$ is merged with f_{2}
- < $\{1\}\{2\}\{3\}>$ and $<\{2\}\{3\}\{4\}$ can be merged into < $\{1\}\{2\}\{3\}\{4\}>$
- < $\{1,5\}\{3\}>$ and $<\{5\}\{3,4\}\}$ can be merged into $<\{1,5\}\{3,4\}$
- < $\{1\}\{2\}\{3\}>$ and $<\{1\}\{2\}\{5\}\}$ cannot be merged

Candidate generation

\square The element structure of the middle part of the merged sequence is the same as the element structure in both s_{1} and s_{2}.
\square First element of the merged sequence will be the first element of the first sequence

- Last element of the merged sequence will be the last element of the second sequence
\square e.g.
- < $\{1\}\{2\}\{3\}>$ and $<\{2\}\{3\}\{4\}$ are merged to $<\{1\}\{2\}\{3\}\{4\}>$
- < $\{1\}\{2\}\{3,4\}>,<\{1,2\}\{3\}\{4\}>, \ldots$ not generated this way,

■ < $\{1,5\}\{3\}>$ and $<\{5\}\{3,4\}\}$ are merged into < $\{1,5\}\{3,4\}>$

- < $\langle 1\}\{5\}\{3,4\}>,<\{1,5\}\{3\}\{4\}>,<\{1\}\{5\}\{3\}\{4\}>, \ldots$ not generated this way

Completeness of candidate generation

■ Are all candidates generated by this approach?
■ Given an arbitrary frequent k-sequence $s=<\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{L}}>$ of length L the two frequent $k-1$ sequences s_{1} and s_{2} that are merged to produce s are the following
■ Case $\mathrm{k}=2$: two subcases based on the structure of s :

- If $\mathrm{s}=\left\langle\{i, j\}>\right.$ we have $\mathrm{s}_{1}=\left\langle\{i\}>\mathrm{s}_{2}=<\{j\rangle\right.$
- If $s=\langle\{i\} j\}>$ we also have $s_{1}=\left\langle\{i\rangle>, s_{2}=\langle j\}\right\rangle$
- Case $\mathrm{k}>2$ 2:
- If E_{1} contains more than one event $\mathrm{s}_{1}=\left\langle\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{L}-1}, \mathrm{E}^{\prime}>\right.$, where E^{\prime} is obtained from E_{1} by dropping the last event, otherwise $\mathrm{s}_{1}=\left\langle\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{L}-1}\right\rangle$
- If E_{1} contains more than one event $\mathrm{s}_{2}=\left\langle\mathrm{E}^{\prime \prime}, \ldots, \mathrm{E}_{\mathrm{L}}>\right.$, where $\mathrm{E}^{\prime \prime}$ is obtained from E_{1} by dropping the first event, otherwise $\mathrm{s}_{2}=<\mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{L}}>$

Candidate pruning \& support counting

- Analogous principle to itemset Apriori

■ Given a candidate k-sequence, we check if any of the k-1 subsequences are infrequent:
■ e.g. 4-sequence < $\{1\}\{2\}\{3\}\{4\}>$

- we know that $<\{1\}\{2\}\{3\}>$ and $<\{2\}\{3\}\{4\}>$ are frequent since they were used to generate the 4 -sequence
- we need to check is $<\{1\}\{2\}\{4\}>$ and $<\{1\}\{3\}\{4\}>$ are frequent
- If any infrequent subsequence is found the candidate is pruned
- Support counting is then performed for the remaining candidates and candidates below the minsup threshold are discarded

Timing constraints

\square In some applications, relative timing of the transactions is crucial to define the pattern
■ e.g. Consider a credit card company wanting to mine unusual patterns in purchasing behavior:

- A fraudulent user of the card could easily buy similar items as the normal users would do, so the sequence of transactions might not discriminate enough
- But the fraudulent user would do the purchases in short time interval to make maximum use of the card before it is close
\square Constraining the patterns in temporal dimension is required to mine such patterns

Importance of timing: Examples

- Web sequence:
< \{Homepage\} \{Electronics\} \{Digital Cameras\} \{Canon Digital Camera\} \{Shopping Cart\} \{Order Confirmation\} \{Return to Shopping\} >
- Probably interesting only if happens during a single session

■ Sequence of initiating events leading to the Three-Mile Island Nuclear
Accident:
< \{clogged resin\} \{outlet valve closure\} \{loss of feedwater\} \{condenser polisher outlet valve shut\} \{booster pumps trip\} \{main waterpump trips\} \{main turbine trips\} \{reactor pressure increases\}>

- Probably only relevant if all events happen within 24 hours

■ Credit card database:
$<\{$ Clothing Shop, $500 €\}\{$ Jewellery shop, $500 €\}\{$ Restaurant, $300 €\}$

- Perhaps more alarming if happens during a single day

Timing Constraints

\square We consider two kinds of constraints:

- max-span constraint (m_{s}): maximum allowed time between the first element and the last element in the sequence
- max-gap constraint $\left(\mathrm{x}_{\mathrm{g}}\right)$: maximum length of a gap between two consecutive element

x_{g} : max-gap
m_{s} : maximum span

Timing Constraints: Example

- Assume parameters: $\mathrm{x}_{\mathrm{g}}=2, \mathrm{n}_{\mathrm{g}}$ $=0, \mathrm{~m}_{\mathrm{s}}=4$
- Consider the data sequences below with element time stamps 1,2,3,...

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No $\left(x_{\mathrm{g}}=3\right)$
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No (ms $=5)$

Mining Sequential Patterns with Timing Constraints

- Approach 1:

■ Mine sequential patterns without timing constraints
■ Postprocess the discovered patterns

- Approach 2:
- Modify the mining process to prune candidates that violate timing constraints during candidate generation
- Question:
- Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Suppose:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{g}}=1 \text { (max-gap) } \\
& \mathrm{m}_{\mathrm{s}}=5 \text { (maximum span) } \\
& \text { minsup }=60 \%
\end{aligned}
$$

$<\{2\}\{5\}>$ support $=40 \%$
but
$<\{2\}\{3\}\{5\}>$ support $=60 \%$

Problem exists because of max-gap constraint!

Contiguous Subsequences

- The non-monotonicity caused by the maxgap constraint can be circumvented by considering contiguous subsequences
- Examples: $\mathrm{s}=<\{1\}\{2\}>$
- is a contiguous subsequence of

$$
<\{1\}\{23\}>,<\{12\}\{2\}\{3\}>\text {, and }<\{34\}\{12\}\{23\}\{4\}>
$$

- is not a contiguous subsequence of

$$
<\{1\}\{3\}\{2\}>\text { and }<\{2\}\{1\}\{3\}\{2\}>
$$

- A k - 1 -sequence t is a contiguous subsequence of k sequence k if t can be constructed by
- deleting events from the elements of s
- while not allowing middle elements to get empty

Modified Sequential Apriori for timing constraints

■ Modified Apriori principle: If a k -sequence is frequent, then all of its contiguous k -1-subsequences are frequent

- Modified algorithm:
- Candidate generation step remains the same: we merge two frequent k -1 sequences that have the same middle part (excluding first and last event)
■ In Candidate pruning, we only need to verify contiguous k-1-sequences
- e.g. Given 5 -sequence $<\{1\}\{2,3\}\{4\}\{5\}>$ we need to verify $<\{1\}\{2\}\{4\}$ $\{5\}>,<\{1\}\{3\}\{4\}\{5\}>$ and need not to verify $<\{1\}\{2,3\}\{5\}>$
- In support counting need to check that maxspan constraint is not violated

Support of a sequential pattern

\square Support of a sequential pattern is not as clear cut as itemset support, due to the repetition of the items in the data sequence

■ Many choices, two most important are

1. One occurrence per object: 'Customer X has bought Bread and then Milk' in some maxspan=7-day interval
2. One occurrence per sliding window: 'Customer X has bough Bread and then Milk in 7-day interval in five occasions'

Support of a sequential pattern

\square Important: the baseline ' N ' for determining the support depends on the counting method

■ One occurrence per object: $N=$ the number of objects (e.g. Customers)

- One occurrence per sliding window: $N=$ the number of possible positions for the sliding window in all objects

$\begin{array}{cc}\text { Sequence: (p) (q) } \\ \text { Method } & \begin{array}{c}\text { Support } \\ \text { Count }\end{array}\end{array}$

COBJ
1

CWVIN
6

Text mining

- Text databases are an important form of sequential data
- News databases
- Blog archives

■ Scientific journals and abstract databases

- Many tasks:
- Text categorization
- Concept/entity extraction,

■ Sentiment analysis,
■ Document summarization, etc.
■ How can frequent pattern mining help?

Phrases in text

- Two general types of phrases can be defined:

■ Syntactical phrases: governed by the grammar of the language

- noun phrases: ‘a green ball’,
- verb phrases: ‘saw a ball’
- ...not in the scope of this course

■ Statistical phrases

- frequent n -grams (frequent n -sequences of consecutive words) - basic tool in text analysis
- frequent word sequences
- of any length, gaps allowed

■ ...this we can do!

Finding frequent phrases in text

1. The Congress subcommittee backed away from mandating specific retaliation against foreign countries for unfair foreign trade practices.
2. He urged Congress to reject provisions that would mandate U.S. retaliation against foreign unfair trade practices.
3. Washington charged France West Germany the U.K. Spain and the EC Commission with unfair practices on behalf of Airbus.

- Possible goal: find frequent phrases that capture topics among the documents

Finding frequent phrases

- The machinery for sequential pattern mining can be applied in principle
■ We take documents as data sequences
■ Words as items (events),
$■$ Transactions (elements) consist of single words
- Timestamp from the word order in the document
\square Preprocessing phase is needed:
■very common words are removed
■ some punctuation may be removed
■ numbers removed or converted
\square stemming
- countries -> countr

Skewed support of natural language

■ Word frequencies in 'Moby Dick': Top 20 words are 'stop words' i.e. generic words with little content

- Typical approach in text analysis is to remove such words

Finding maximal frequent sequences

■ Example Document: 'The Federal Reserve entered the U.S. Government securities market to arrange1.5 billion dlrs of customer repurchase agreements, a Fed spokesman said. Dealers said Federal funds were trading at 6-3/16 pct when the Fed began its temporary and indirect supply of reserves to the banking system.'
■ Maximal frequent sequences: federal reserve entered u.s. government securities market arrange repurchase agreements fed dealers federal funds trading fed began temporary supply reserves banking system (22 words)
■ Paper \#3: H. Ahonen-Myka: Finding all maximal frequent sequences in text. ICML-99 Workshop: Machine Learning in Text Data Analysis, 1999, pp. 11--17

