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Why NMR (instead of X-ray crystallography)

e agreat number of macromolecules won't crystallize)
e natural environmant (water)
« ligand binding and inter-molecular interactions
* dynamics and characterisation of mobility
— conformational changes and their time-scale

— folding
— enzyme function (turn-over, Kinetics)
* molecular size: NMR < 50 - 100 kDa (900 kDa?)

crystallography > 200 kDa
=> COMPLEMENTING TECHNIQUES!!

« NMR:about 4015 solved protein structures, crystallography: about.
26100 (autumn 2005)
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1946 Bloch, Purcell
1955 Solomon

1966 Ernst, Anderson
1975 Jeener, Ernst
1985 Wiithrich

History of NMR

First nuclear magnetic resonance
NOE (nuclear Overhauser effect)
Fourier transform NMR
Two-dimensional NMR

First solution structure of a small protein
from NOE-derived distance restraints

- NMR is about 25 years younger than X-ray crystallography

1987/8
1996/7

2003

Nobel prizes
1944 Physics
1952 Physics
1991 Chemistry
2002 Chemistry
2003 Medicine

3D NMR + 13C, 5N isotope labeling

New long-range structural parameters:

- residual dipolar couplings (also: anisotropic diffusion)
- cross-correlated relaxation

TROSY (molecular weight > 100 kDa)

First solid-state NMR structure of a small protein

Rabi (Columbia)

Bloch (Stanford), Purcell (Harvard)

Ernst (ETH)

Withrich (ETH)

Lauterbur (Urbana), Mansfield (Nottingham)
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Tube Mode

sample Tube

Cold (cryo) probe

Cryo cooled RF coll

-in a cold probe all the electronics before
the preamplifier, including the rf coils are
maintained in the temperature of 25 K => )
reduced thermal noise

=> increased signal to noise ratio

Vacuum chamber

- the sample is not in cold Cold He ”"b‘*“m; :
gas supply ;

War/m He E.,

gas returm

Vacuum chamber valve
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Protein samples

e required concentration 1 mM (1 mg)
— high concentration => higher aggregation probability => cryo probe

« usually double (triple) labelled: 1°N,13C(,2H)

— produced in bacteria (yeasts)

— or cell-free production (enables e.g. highly efficient use of labels and
position specific labelling)

e buffer
* 90% H,O /10% D,O (amino groups => NH, in stead of ND,)
e 200 pl (Shigemi tube) - 600 pl (normal tube)
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1D 1H NMR spectrum of a protein
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1D NMR spectrum of a protein
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Folded

Unfolded 20 kDa protein
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Secondary structure from chemical shifts

* intrinsic chemical shifts (depending on amino acid or nucleotide type)

random coil chemical shifts in proteins (G-G-X-G-G)
* conformational chemical shifts, i.e. secondary chemical shift Ad

difference of actual chemical shift to random coil chemical shift

A8 (*3Ca., 3CB)

Q- heli

= secondary structure/backbone conformation from 'H,"*C shifts
* ring-current shifts =» tertiary structure

* applications (proteins):
— secondary structure identification: chemical shifts index

— secondary structure prediction, combined with database (TALOS)

Secondary structure from secondary chemical shift A8

A8 (*3Co-13CP)

Residue number
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Folded protein Unfolded protein
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NOESs In structure determination
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NOE based assignment strategies

through-bonds through-space

(COSY)  p—oun (NOESY)
homonuclear 1COSY ||NOESY

N-CA-CO-N-CA

heteronuclear mmmmm e -
LNH-HSQC-TOCSY | [ "NH-HSQC-NOF C—NUESYI
(IH’ IEN]

Sattler 2t al. Prog. NMR Spectrosc. (1999) 34 93-158.

VIr



Scalar coupling based assignment

Backbone assignment

In a uniformly *C/15N-labeled protein
numerous chemical shifts can be i
measured and correlated via scalar

1J and 2J-couplings —
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CBCANH
_ CBCA(CO)NH intra-/interresidue correlation
interresidue correlation (strong/weak)
@
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Back-bone assignment

-experiments needed: | |

15N-HSQC, HNCA (trosy), " " g
HN(CO)CA, HNCACB, ) e —¢
HN(CO)CACB,HNCO o @ o

- recuires double labelled protein (13C and °N)
- large protein => aso 2H labelling needed
- auto-assignment programs => 40-90%

- binding site identification
- conformation
- dynamics
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Nuclear Overhauser Effect (NOE): spin interactions through space
Cross peaks are only observed if 'H-H distance r <5A
NOE ~ 1/r

-
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NMR determination of protein 3D structure

e double (triple) labelled protein: 1°N, 13C, (?H)
* back-bone (main chain) assignment

— e.g. autoassign
» close to the performance of man
« automatic peak picking (=> +10%)
» very fast: less than 1 min for a medium sized protein
— (cf. 2 weeks manually)
e side chain assignment
— more difficult (crowded spectra)
— manually at least a month
— very important (mistakes won't reveal themselves but result in a
wrong structure)

— some attempts for automation, so far very heavy and slow, manual
double checking required

VIr
A
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e assignment of the NOEs and structure calculation
— 1N and 13C NOESY
— manually 1-12 months
— e.g. ~2000 signals for a 100 amino acid protein
— CYANA: ~24 h with one processor (100 aa)
» can use parallel computing: 15 min. with a 128 CPU cluster
» uses torsion angle space, simulated annealing
» repeates the cycle several hundreds of times
» autoput: the sructure in pdb format
« 3D structure determination of a medium sized (well behaving)
protein takes about 2 months



Residual dipolar couplings

Protein alignment for dipolar
coupling detection

Domain orientations
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Protein ligand interactions



'H-PN-HSQC spectrum
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A region of a HSQC titration series
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"SAR by NMR™, basic principle

P
o §u
— 1 ¢ Screen for first ligand

2. ¢ Optimize first ligand

3. ¢ Screen for second ligand

4. * Optimize second ligand

5. W Link ligands
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Limitations

e protein size

* need for labelling (double or triple)
 solubility

 Interactions

 "NMR behavior"

e amount protein needed
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Transferred NOEs represent the bound state of the ligand

Protein bound ligand
)\} = large negative NOEs

Dissosiation

Detection of (negative) NOEs originating
from the bound state = transferred NOE
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1.8

NOESY spectrum of
Kdo2-4Kdo-alyl in D,O
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Tr-NOESY spectrum of
S25-39 / Kdo2-4Kdo-allyl

complex
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S25-39 bound conformation of
a-Kdo-(2® 4)-a-Kdo-(2® O)-dllyl
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The major binding epitopes of Kdoa2-4Kdo (A)
and Kdoa2-8Kdo (B)




