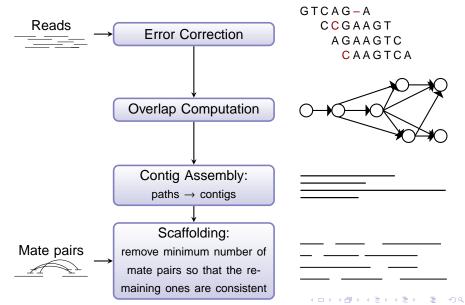
Fast scaffolding with small independent mixed integer programs

Leena Salmela, Veli Mäkinen, Niko Välimäki, Johannes Ylinen, and Esko Ukkonen

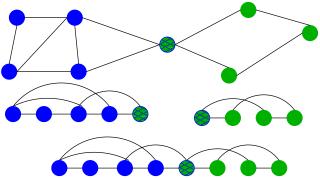
October 28th, 2011

DNA fragment assembly workflow



Previous work

- ► Even determining the orientation of contigs is NP-complete:
 ⇒ All approaches use heuristics
- Biconnected components of the scaffolding graph can be solved independently (Dayarian et al. 2010)



Several tools developed: SOPRA, Bambus, SSPACE, OPERA...

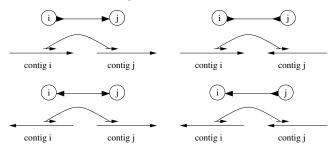
3/10

Overview of our work

- Cleaning input:
 - Keeping only more reliable mate pairs
 - Bundling mate pairs that connect the same contigs together
 - Estimating the distance between contigs based on the mate pairs
- Partitioning the problem into smaller subproblems of restricted size
- Solving each subproblem as a mixed integer program (MIP)

Scaffolding graph

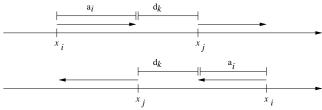
- Nodes: contigs
- Edges: mate pairs connecting contigs
 - Support is the number of mate pairs connecting the contigs
 - Distance is the estimated distance of the contigs based on the mate pairs linking the contigs directly
 - Orientation of the contigs



Partitioning the problem

- Initially: Nodes=contigs, no edges
- Sort the edge candidates according to their support
- Add edges to the graph in descending order of their support but only if the edge does not create a too large biconnected component in the graph.
- Biconnected components of the graph can be maintained under updates efficiently using a data structure by Westbrook and Tarjan (1992)

MIP formulation



- ▶ $x_i \in \{1...N\}$: location of contig *i*
- ▶ $o_i \in \{0 = \text{reverse}, 1 = \text{forward}\}$: orientation of contig i
- ► $I_k \in [0, 1]$: smoothed indicator of edge k
- a_i: length of contig i
- ▶ s_k: support of edge k
- ▶ d_k: distance of edge k
- C: large constant

maximize $\sum_{k} s_{k} I_{k}$ such that

$$o_i - o_j - (1 - I_k) \le 0$$

 $o_i - o_j + (1 - I_k) \ge 0$
 $x_i + a_i + d_k - C(1 - I_k) - C(1 - o_i) \le x_i$

$$x_i + a_i + d_k - C(1 - I_k) - C(1 - o_i) \le x_j$$

 $x_i + a_i + d_k + C(1 - I_k) + C(1 - o_i) \ge x_i$

$$x_j + d_k + a_i - C(1 - I_k) - Co_i \le x_j$$

$$x_j + d_k + a_i + C(1 - I_k) + Co_i \ge x_j$$

Validation

- Align the scaffolds to the reference genome:
 - Find local maximal approximate matches (swift by Rasmussen et al. 2006)

- Produce maximal colinear chains of the above matches (colinear chaining algorithm by Abouelhoda 2007)
- ▶ N50: "length-weighted median", sequences longer than the N50 value cover half of the combined length of a sequence set
- Normalized N50: we computed the N50 statistic for the aligned parts of the scaffolds

Experimental results: Normalized N50 values

Scaffolder	E.Coli	C.Elegans	P.Syringae	Human
SOPRA	185,227	130,346	72,714	-
SSPACE	-	-	93,850	179,418
MIP Scaffolder	170,796	183,891	84,779	190,008

Thanks!

- Acknowledgements:
 Rainer Lehtonen, Virpi Ahola, Ilkka Hanski, Panu Somervuo, Lars
 Paulin, Petri Auvinen, Liisa Holm, Patrik Koskinen, and Pasi Rastas.
- More information: L. Salmela, V. Mäkinen, E. Ukkonen, N. Välimäki, and J. Ylinen: Fast scaffolding with small independent mixed integer programs. To appear in *Bioinformatics*.