Algorithms for Exact Structure Discovery
in Bayesian Networks

Pekka Parviainen

Helsinki Institute for Information Technology HIIT
Department of Computer Science
University of Helsinki

Algodan Seminar
28.10.2011

Outline

» Structure Discovery Problems
» Time-Space Tradeoffs

» Extensions and Future Work

Bayesian networks

» Representations of joint probability distributions

» Consist of:
» The structure is a directed acyclic graph (DAG) that
represents conditional independencies between variables.
» The local conditional probability distributions that are
specified by parameters.

bus, overs. | yes no

yes, yes |0.1 0.9
yes, no |0.2 0.8
no, yes lo3 0.7
yes no alarm | yes no
0s o1 yes 0.1 0.9 no. no LE o1

no 0.9 0.1

Score-based Structure Discovery

Var. 1 Var. 2 Var. 3 Var 4
Person A | 1 1 2 1
Person B | 2 2 1 1
Person C | 1 2 2 2
Person D | 2 1 2 1

g

.@—».%>0

Score: -23.43 Score: -22.61 Score: -2346

g

Optimal Structure Discovery (OSD) Problem

» The score of a DAG is the sum of the local scores.
» Problem:

» Input: Local scores for each node and possible parent
set.
» OQutput: A DAG that maximizes the score.

Feature Probability (FP) Problem

» Problem:

» Input: Local scores for each node and possible parent set
(computed from the data), a structural prior and a
structural feature.

» Output: Posterior probability of the feature given the

data.
» Bayesian averaging.
» Assumptions: Order-modular prior, modular feature (for
example an arc).

Why Time-Space Tradeoffs?

» An exact algorithm is guaranteed to learn an optimal
Bayesian network from data — no uncertainty on the
quality of the output.

» Many exact methods use dynamic programming

» Time and space complexities are within a polynomial
factor of 2", where n is the number of nodes.

» Space requirement is the bottleneck

» For example Silander—Myllymaki implementation
requires 89 GB of space (memory + disk), when n = 29
and 784 GB, when n = 32.

» If we save space, how much more time do we need?

Partial Order Approach [Parviainen & Koivisto

UAI'09]

» |dea:
1.

4.

Fix a set of partial orders to “cover” all possible linear
orders.

Choose a partial order from the set.

Find an optimal DAG compatible with the chosen partial
order.

Repeat steps 2 and 3 for all partial orders in the set.

» Step 3 can be computed in time and space proportional
to the number of ideals.
» An ideal of a partial order P is a set that can start a

linear extension of P.

» Space: the number of ideals (per partial order)

» Time: the number of ideals multiplied by the number of
partial orders.

Linear Orders and ldeals
N =1{a,b,c,d}

abed
ahde
achd

acdb E h-‘:«a

adbc

adch /W
bacd

badec [foc.d fabay abe)

bead

beda

bdac

bdeca

cabd e o fad (ol @e fan]
chad

chda

cdab

cdba {c} -lﬁ.
dach T ——
dach

dbac ey

dbca

dcab

dcba

Number of linear orders = 4! = 24
Number of ideals = 2% = 16
Space = 16, Time = 16

Partial Orders and Ideals
N ={a, b,c,d}, partial order a < b, ¢ < d fixed.

abed
abdc
achd
acdb {ab.c.d)

adeh

bacd

pade (b facdl faba) b
bead

beda

bdac

bdca

cabd

cadl et {bud} {ad {bich fach {ab}
chad

chda

cdab

cdba i e} o (a}
dabc

dach

dbac ey

dbca

dcab

deba

Number of ideals = 3220 =9
Partial orders needed to cover all linear orders = 2% = 4
Space =9, Time =9 x4 =36

Space—Time Tradeoffs for Permutation Problems
[Koivisto & Parviainen SODA'10]

» Find a permutation of n elements so as to minimize a
given cost function.
» Examples:

» Travelling Salesman
Feedback Arc Set
Cutwidth
Treewidth
Scheduling

OsD

» Sum-product problems

vV vV vV Vv VY

Parallel Bucket Orders

—

Parallel 13 * 13 bucket orders are optimal with respect to
time—space product.

[m]

=

Tradeoffs

Tradeoff
4‘
TS5=4
ag #* Dynamic Programming
o Divide and Conguer
ETRTRTES B |
36t ——=13°13
¢ m*mi1=m=12
3.4 m*m. 14<=ms=n?2
== m*(n-m)
{“3.2-
I
L gl
E °
=
~ zar
26
24t
22}

L
1.4 1.5 16

5 (Space = 87)

Space—Time Tradeoffs for the FP Problem
[Parviainen & Koivisto AISTATS'10]

» In similar fashion as for the OSD problem.

» Requires a fast sparse zeta transform algorithm (a special
case of zeta transform for lattices, see [Bjorklund,
Husfeldt, Kaski, Koivisto, Nederlof & Parviainen
SODA'12]).

1 2 3 12 13 23 123

Extensions

» Use exact algorithms as building blocks to develop better
heuristics [Niinimaki, Parviainen & Koivisto UAI'11].

» FP problem with nonmodular features — learning
ancestor relations [Parviainen & Koivisto ECML
PKDD'11].

Future Work

» Unobserved variables in score-based structure discovery
» Local learning

» Learning under structural constraints (e.g. treewidth)

Thank you!

