Alecoran

The Sum-Product Bridge

Mikko Koivisto
Academy Research Fellow

Aalto University

Sums of Products United - People

- Club members at the CS department of UH

Esther Galbrun, PhD student (co-advisor H. Toivonen)
Kustaa Kangas, MSc student
Mikko Koivisto, leader, advisor
Janne Korhonen, PhD student (co-advisor P. Kaski)
Teppo Niinimäki, PhD student
Pekka Parviainen, PhD student
■ Associate club members (key collaborators)
Petteri Kaski (Algodan, Aalto University)
Andreas Björklund (Lund University)
Thore Husfeldt (IT University Copenhagen)

SoPU - Mission

Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.

The amazing Fairyland Bridge connects two mountains at 5,000ft at Huangshan.

SoPU - Mission

Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.

A Ane Bratian

Probabilistic Models - Sums of Products

Bayesian network

Computational tasks

Inference:

$\mathrm{p}_{\mathrm{G}}(\mathrm{a} \mid \mathrm{bc})$
$=\sum_{\text {de }} \mathrm{p}_{\mathrm{G}}($ abcde $) / \sum_{\text {ade }} \mathrm{p}_{\mathrm{G}}($ abcde $)$

Learning:
$\mathrm{G}^{*} \in \operatorname{argmax}_{\mathrm{G}} \mathrm{p}_{\mathrm{G}}($ abcde $) \mathrm{p}(\mathrm{G})$, with $p(G)=p\left(G_{a}\right) p\left(G_{b}\right) \ldots p\left(G_{e}\right)$
$p_{G}($ abcde $)=p(d) p(e) p(a \mid d e) p(b \mid a) p(c \mid a e)$

Sums of Products - Algebra \& Combinat.

Algebra

$\sum_{x \in A} \Pi_{S} f_{S}\left(x_{S}\right)$

■ Rings
$(+, \cdot)$ over integers
$(+, \cdot)$ over polynomials

- Semirings
(max, •)
(min, +)
(min, max)

Combinatorics

■ The scopes $S \subseteq\{1, \ldots, n\}$ form a hypergraph.
(E.g., in BN inference)
\square The summation is over a domain $A \subseteq D_{1} \times \cdots \times D_{n}$ that may have a combinatorial structure.
(E.g., in BN learning)

SoPU: Results 2010-2011

- Algorithm theory

SODA'10,
ICALP'10,
SODA'12,
Information Processing Letters 2010.
\square Computational statistics
AISTATS'10,
UAl'11,
ECML-PKDD'11, SDM'11.

Interactions: a directed acyclic graph

Permanent stuff (BHKK, IPL 2010)

$\square \operatorname{per} A=\sum_{p} a_{1 p(1)} \cdots a_{m p(m)}$, where p runs through all injections from $[m]$ to $[n]$.

- Theorem

Algebraic structure
semiring
commutative semiring
ring
commutative ring

Time complexity
m B(n, m)
$m(n-m+1) 2^{m}$
m B(n, m/2)
$\left(m n-m^{2}+n\right) 2^{m}$
$B(n, m)$ is the number of subsets of $[n]$ of size at most m.

What Next

■ Keep the main themes

- Make use of subtraction (additive inverses)
- Optimization via counting
- Space-time tradeoff considerations
\square Bilinear transforms
- Systematic study
- Bayesian networks

■ Implement into a public software

- Apply to causal discovery with domain experts
- Other
- Can randomized algorithms be much faster?
\square Better combinatorial bounds?

ALecran

