

The Sum-Product Bridge

Mikko Koivisto Academy Research Fellow

Sums of Products United – People

Club members at the CS department of UH

Esther Galbrun, *PhD student (co-advisor H. Toivonen)* Kustaa Kangas, *MSc student* Mikko Koivisto, leader, advisor Janne Korhonen, PhD student (co-advisor P. Kaski) Teppo Niinimäki, PhD student Pekka Parviainen, *PhD student* Associate club members (key collaborators) Petteri Kaski (Algodan, Aalto University) Andreas Björklund (Lund University) Thore Husfeldt (IT University Copenhagen)

. . .

SoPU – Mission

Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.

The amazing Fairyland Bridge connects two mountains at 5,000ft at Huangshan.

SoPU – Mission

Build and maintain a bridge that connects algorithm theory and computational statistics by developing the methodology of computing large sums of products.

Probabilistic Models – Sums of Products

Bayesian network

Computational tasks

Inference:

p_G(a|bc)

 $= \sum_{de} p_{G}(abcde) / \sum_{ade} p_{G}(abcde)$

Learning: $G^* \in \operatorname{argmax}_G p_G(abcde)p(G),$ with $p(G)=p(G_a)p(G_b)...p(G_e)$

 $p_{G}(abcde)=p(d)p(e)p(a|de)p(b|a)p(c|ae)$

Sums of Products – Algebra & Combinat.

Algebra

 $\sum_{x \in A} \prod_{s} f_{s}(x_{s})$

Rings

(+, ⋅) over integers
(+, ⋅) over polynomials
Semirings

(max, ⋅)
(min, +)
(min, max)

Combinatorics

The scopes S ⊆ {1,...,n} form a hypergraph. (E.g., in BN inference)

The summation is over a domain A ⊆ D₁×····×D_n that may have a combinatorial structure. (E.g., in BN learning)

© Jamey Stillings/Barcroft Media

SoPU: Results 2010–2011

- Algorithm theory
 - SODA'10,
 - ICALP'10,
 - SODA'12,
 - Information Processing Letters 2010.
- Computational statistics
 - AISTATS'10,
 - UAI'11,
 - ECML-PKDD'11,
 - SDM'11.

Interactions: a directed acyclic graph

Permanent stuff (BHKK, IPL 2010)

per A = $\sum_{p} a_{1p(1)} \cdots a_{mp(m)}$, where p runs through all injections from [m] to [n]. Theorem Algebraic structure Time complexity semiring m B(n, m)commutative semiring $m(n-m+1)2^{m}$ m B(n, m/2)ring $(mn-m^2+n)2^m$ commutative ring B(n, m) is the number of subsets of [n] of size at most m.

What Next

Keep the main themes

- Make use of subtraction (additive inverses)
- Optimization via counting
- Space-time tradeoff considerations
- Bilinear transforms
 - Systematic study
- Bayesian networks
 - Implement into a public software
 - Apply to causal discovery with domain experts
- Other
 - Can randomized algorithms be much faster?
 - Better combinatorial bounds?

