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Abstract

I Theory of independent component analysis (ICA) almost
exclusively about estimation

I Here, we propose fundamental testing methods

I Which independent components are reliable/significant?

I Test can be about the mixing matrix or the component values

I We propose a null hypothesis based on the idea of intersubject
consistency
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Independent component analysis

I ICA is widely used for analyzing neuroimaging data
I One of the main methods in resting-state analysis
I Finds easily resting-state networks in fMRI (Beckmann et al

2005, Van de Ven 2005), recently similar results in MEG
(Hyvärinen et al 2010, Brookes et al 2011)

I Decomposes data matrix X into a
mixing matrix A and component
matrix S

X = AS

I Maximizing independence or
non-gaussianity of the rows of S.

(Beckmann et al, 2005)
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Importance of testing independent components

I How do we know that an estimated component is not just a
random effect?

I ICA algorithms give a fixed number of components and do not
tell which ones are reliable (statistically significant)

I Algorithmic artifacts also possible (local minima)

I In general, any estimation method should be complemented
by a testing method

I Previously, testing zeros in the mixing matrix was prosed by
Shimizu et al. (2006), but often zeros are not priviledged.
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Testing using intersubject or intersession consistency

I We propose the following approach:
I We assume we have a number of similar datasets available
I Do ICA separately on each of them
I A component is significant if it appears in two or more

datasets in a sufficiently similar form

I Different datasets can come from different subjects, or
sessions.

I Similarity could be about components in S or columns of
mixing matrix A

I Key question: How to quantify the case of complete
randomness, i.e. null hypothesis
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Testing the mixing matrix: Null hypothesis

I ICA is a rotation of whitened data X: after whitening, we have

X̃ = US (1)

I Assume all the subjects/sessions can be whitened using the
same matrix.

I Under null hypothesis, spatial patterns of different subjects
are “completely random” rotations in the PCA subspace
(uniformly distributed in the set of orthogonal matrices).

I This models both the actual randomness in the data
(differences in brain anatomy) and errors in ICA estimation.
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Definition and significance of similarities

I Consider columns of the mixing matrix pjl of components j
and dataset l .

I Compute similarities of spatial patterns using Mahalanobis
metric

γij ,kl =
|pT

ikMpjl |√
pT
ikMpik

√
pT
jl Mpjl

(2)

with M is (stabilized) inverse of covariance matrix of p
I Under null hypothesis, marginal distribution of γ can be

obtained in closed form: e.g.

t =
γ
√
d − 1√

1− γ2
(3)

follows a Student’s t-distribution with d − 1 DOF.
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Clustering

I Once significances have been
computed, use them in clustering

I Prune connections (similarities)
which are not significant

I No more than one component per
subject

I Similar to hierarchical clustering
⇒ Single-linkage vs.
complete-linkage strategies

Subject 1 Subject 2 Subject 3
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Corrections for multiple testing

I We are testing over many connections, so false positive rates
have to be corrected

I We use two different corrections
I For initial creation of cluster: Bonferroni correction

I Probability of having any false positive clusters < α.
I We don’t want to have any false positive clusters

I For adding more components to cluster: false discovery rate
I Percentage of false positive components < α.
I A few false positive components is not too serious, and we

don’t want to be too conservative.
I Can be computed by Simes’ procedure, or using a simple

formula:
αcorr =

α

number of subjects
(4)
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Simulations on artificial data
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False positive rates and false discovery rates for simulated data.
The desired rates were set to 5%.
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Testing ICs: results
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11 subjects, PCA dimension 64, α = 0.05, 43 clusters found
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Testing independent components themselves

I Spatial ICA: scans at different time points are linear sums of
“source images”

= an1

= a21

= a11  +a12 ... +a1n

I Almost always used in fMRI

I Can also be useful with MEG (Ramkumar et al, 2011)
I The independent components (rows of S) are similar over

datasets in X = AS
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Empirical approach to null distribution

I Same basic approach:
I ICA separately on multiple datasets k , l (subjects/sessions)
I Compute similarities γ = SkST

l
I Null hypothesis: random orthogonal rotation

I But: Independent components contain a lot of noise
⇒ Similarities necessarily small

I Null distribution modelled empirically

I For random orthogonal matrices, we have

γ2 ∼ Beta(1/2, β) (5)

where β equals the dimension of the space.

I Here, we estimate β by fitting to the empirical distribution
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Resting- state networks on fMRI data (preliminary)

Somatomotor Cerebellar Visual

Default Attention (L) Attention (R)Control ???????

Visual Visual Auditory

I 11 subjects

I PCA dimension 75

I α = 0.001

I 56 clusters found
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Computational complexity

I Main difficulty is memory: We need to store similarity matrix

I This can be reduced by storing just the strongest similarity
from each components

I We can handle 100-200 subjects with 100-200 components on
a desktop computer

Computation Memory
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Special bonus slide for Algodan

I The method could be applied in general unsupervised learning

I Assume the features live in a set of finite volume (compact),
e.g. the unit sphere

I Then we can define the null hypothesis

I Consider e.g. clustering, where data is normalized to unit
sphere

I Any data set can be divided into n subsets and learning can
be performed for each data set

I Maybe you can apply this testing for your own method?
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Conclusion

I We introduces methods for testing of which independent
components are reliable, i.e. statistically significant

I We can test columns of the mixing matrix, or the values of
the independent components themselves

I Based on doing ICA separately on many datasets, i.e. different
subjects or sessions

I Null hypothesis defined as orthogonal rotations in whitened
space

I Null distribution obtained analytically for mixing matrix case
Empirical approximation needed for ICs

I Application on MEG and fMRI promising
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