Teaching programme 2008-2009
Autumn 2008:
Bioinformatics -
Computer science, mathematics and
statistics -
Biology and medicine
Spring 2009:
Bioinformatics -
Computer science, mathematics and
statistics -
Biology and medicine
Language courses
Teaching at departments
Location guide
Previous academic years
Teaching and event calendar
You can find teaching times in the MBI teaching and event calendar.
Autumn 2008
Bioinformatics courses / Autumn 2008
Bayesian paradigm in genetic bioinformatics (6 credits)
Adjunct Professor Sirkka-Liisa Varvio, 17 November - 5 December 2008,
Wed 12-16, Thu 14-16, Exactum B120.
Applications of Bayesian approach in computer programs and data
analysis of genetic past, phylogenetics, coalescence, relatedness,
haplotype structure, disease gene associations. Detailed program
schedule during September.
Applicable to first and second year studies in
Bayesian statistics and Bioinformatics (MBI) Master's degree programmes.
Registration: During first lecture or by e-mail to lecturer.
582483 Biological Sequence Analysis (6 credits)
Research Director Esko Ukkonen, 27 October - 2 December, Mon, Tue 14-16 Exactum
C221 (II period)
The course covers the basic probabilistic methods for modelling and
analysis of biological sequences. Prerequisities: Introduction to
Bioinformatics and basics of probability calculus. Course book: Durbin
R., Eddy S., Krogh A. and Mitchinson G.: Biological sequence analysis,
Cambridge University Press, 1998. Course exam Thu 11th December from
16.00 to 19.00.
T-61.5120 Computational genomics (4-7 credits)
Adjunct Professor Sampsa Hautaniemi, T-building (I-II periods)
Algorithms and models for biological sequences and genomics.
582606 Introduction to Bioinformatics (4 credits)
University Lecturer Esa Pitkänen, 2 September - 10 October, Tue, Fri 14-16
(I period)
Exactum C221, Exercises: Tue 16-18 Exactum C221
This course gives an introduction to the central topics in
bioinformatics, and gives a foundation for further courses in the
Master's Degree Programme in Bioinformatics (MBI). Course book:
Deonier R. C., Tavare S., Waterman M. S.: Computational Genome
Analysis - An Introduction, Springer, 2005. Course exam Wed 15th of
October from 16.00 to 19.00.
Introduction to bioinformatics (Helsinki Summer School course) (4 credits)
University Lecturer Esa Pitkänen, Assistant Professor Sophia Kossida
(Academy of Athens), 5-21 August 2008, lectures 10-12 Exactum B222, exercises 13-15 Exactum
B221 (summer)
58307312 Master's thesis seminar
University Lecturer Esa Pitkänen, Exactum (I-IV periods)
While working on the Master's thesis, the MBI student is
expected to participate in the Master's thesis seminar on a regular
basis and give two presentations, one on the research plan and the
other on the (nearly) completed thesis. The Master's thesis seminar
operates throughout the year.
T-61.5110 Modeling of biological networks (5-7 credits)
Professor Samuel Kaski, 20-24.10.2008, Lectures 10.30-14.30
room 1021, Exercises 14-18 room Y338, T-Building
Models of biological cellular-level networks: gene regulation,
signaling, metabolism. Methods for inference of networks from data,
and prediction using the models. Mainly probabilistic and machine
learning models.
58308302 Seminar: Neuroinformatics (3 credits)
Professor Aapo Hyvärinen 17 September - 8 October, Wed 14-16 Exactum
C220, 29 October - 03 December Wed 14-16 Exactum C220 (I-II periods)
58309106 Seminar: Machine Learning in Bioinformatics (3 credits)
Professor Juho Rousu 8 September - 6 October, Mon 12-14 Exactum C221, 27
October - 1 December, Mon 12-14 Exactum C221 (I-II periods)
T-61.5080 Signal processing in neuroinformatics (5 credits)
Adjunct Professor Ricardo Vigario, T-building (I-II periods)
The goal of the seminar is to give an overview of some of the
main biomedical signal processing techniques, with clear emphasis to
EEG and MEG. There, we should see something about modeling, artifact
identification and removal, nonparametric and model-based spectral
analysis, segmentation and joint time-frequency analysis. Some closer
attention will be given as well to the analysis of event related
data. Additional topics include independent component analysis,
biorhythms and sleep and synchrony. The material for these extra
topics is in the form of several journal papers.
T-61.6080 Special
course in bioinformatics II: High-throughput sequencing and
its applications (5 credits)
Lecturing Researcher Jarkko Salojärvi, Thu 12-14, T-building A328 (I-II periods)
The purpose of this course is to give postgraduate level
knowledge on bioinformatics or a related field. The actual contents of
the course vary from year to year. The course can be lectured, or
arranged in seminar form.
Statistical methods in genetics
(6-8 credits)
Professor Mikko Sillanpää, Tuesday and Thursday 10-12, Exactum B120 (II period)
The course provides an introduction to statistical methods in gene
mapping and genetic epidemiology. Basic concepts of linkage and
association analysis as well as some concepts of population genetics
will be covered.
Literature: Duncan C. Thomas: Statistical Methods in Genetic Epidemiology, Oxford University Press (2004).
Prerequisites: Basic knowledge of probability calculus and of
likelihood based methods in statistical inference. There are no
molecular biological prerequisites for the course.
Courses in biology and medicine / Autumn 2008
- Genetics courses in Autumn 2008.
Currently the list below contains only the core MBI courses in biology and medicine.
399671 Practical bioinformatics (8-10 credits)
Adjunct Professor Outi Monni, University Lecturer Päivi Onkamo,
Biomedicum, Biomedicum (I-IV periods)
Practical Bioinformatics approaches various bio-computational analysis
methods essential in life sciences from a practical point of view. The
course is tailored for undergraduate and graduate students studying
biosciences (biology, biochemistry, medicine etc.) and assumes no
previous background in bioinformatics or programming. Basic computer
skills are required. The course is organized in Biomedicum Helsinki
(Haartmaninkatu 8).
399672 Biology for methodological scientists (8 credits)
Adjunct Professor Outi Monni, University Lecturer Päivi Onkamo, Biomedicum (I-IV periods)
This course gives an introduction to basic concepts and techniques of
molecular biology. Particularly, the students will study biological
problems that require computational methods to be solved. The course
is particularly tailored for students with no previous molecular
biology background. The course is given annually.
Courses in computer science, mathematics and statistics / Autumn 2008
Courses listed below are suitable for MBI minor subject studies. Other courses maybe be suitable as well - discuss with your student counsellor!
582630 Algoritmien suunnittelu ja analyysi (4 credits,
lectured in Finnish)
Professor Otto Nurmi 3 September - 9 October Wed 12-14, Thu 14-16 Exactum
B222 (I period)
Algoritmien yleisiä suunnitteluperiaatteita. Kokoelma keskeisiä
ongelmia ja edustavia ratkaisualgoritmeja. Keskimääräisen tapauksen
analyysi. Tasoitettu
vaativuus. Palautuskaavat. NP-täydellisyys. Esitietovaatimus:
Tietorakenteet. Kurssi korvaa vanhojen tutkintovaatimusten mukaisen
aineopintojen kurssin Algoritmien suunnittelu. Kurssikoe to 16.10. klo
16-19.
58066 Artificial intelligence (8 credits)
Course is cancelled!
582481 Causal analysis (4-6 credits)
Dr. Patrik Hoyer, 3 September - 10 October, Wed, Fri 10-12 Exactum
C221 (I period)
This course probes the main problems of causal
analysis: identifying cause and effect, and their use for prediction and
decision-making. Prerequisites: Basics of probability theory and linear
algebra. Voluntary project work (2 cr) during the second period.
Course exam (4 credits) Fri 17th October from 9.00 to 12.00.
T-61.5100 Digital image processing (5 credits)
Jorma Laaksonen (I-II periods)
The main topics of the course are: image enhancement, image
restoration, color, spectral analysis and transforms, and image
compression.
582632 Diskreetti optimointi (4 credits,
lectured in Finnish)
Professor Otto Nurmi 28 October - 4 December Tue, Thu 14-16 Exactum
B222 (II period)
Lineaarinen ohjelmointi ja
simplex-algoritmi. Kokonaislukuohjelmointi. Verkkoalgoritmit. Heuristiset
menetelmät. Esitietovaatimus: Algoritmien suunnittelu ja
analyysi. Kurssikoe to 11.12. klo 16-19.
Elementary Bayesian analysis (9 credits)
Adjunct Professor Aki Vehtari, Wednesday 12-16, Exactum D123 (II period)
Elementary Bayesian statistics. Bayesian
probability theory and Bayesian inference. Bayesian models and their
analysis. Computational methods, Markov chain Monte Carlo. Literature:
Gelman, Carlin, Stern & Rubin: Bayesian Data Analysis, Second edition, and
other supplementary material announced in the lectures. Prerequisites:
basics of probability calculus.
Event history analysis (6-8 credits)
Dr. Kari Auranen and Adjunct Professor Sangita Kulathinal, period I (each day between
01/09/2008 and 16/09/2008, 9:15-13:00).
September 1, 2, 4, 5, 8, 9, 15, 16 Exactum B120; September 3, 10
Exactum C323.
The course gives an introduction to
survival and event history analysis, including parametric and non-
parametric estimation of survival distributions and the point process
formulation of event history models. Data from life sciences are employed
as examples. The course includes computer class exercises using the R
program. Literature: Andersen, Borgan, Gill & Keiding: Statistical Models
Based on Counting Processes. Springer-Verlag, (1993). Kalbfleisch,
Prentice: The Statistical Analysis of Failure Time Data. 2nd ed. New York:
Wiley, (2002). Prerequisites: basic skills in statistics and programming.
582631 Johdatus koneoppimiseen (4 credits,
lectured in Finnish)
Professor Matti Kääriäinen, University Lecturer Marko Salmenkivi 29
November - 5 December Wed, Fri 12-14 Exactum C222 (II period)
Kurssilla tutustutaan koneoppimisen peruskäsitteisiin ja menetelmiin,
teoriassa ja käytännössä. Kurssilla käsitellään ohjattua oppimista
(luokittelu, regressio) ja ohjaamatonta oppimista
(ryvästäminen). Kurssi antaa hyödyllisiä esitietoja useille
data-analyysiä ja koneoppimista sivuaville syventäville kursseille eri
erikoistumislinjoilla ja bioinformatiikan
maisteriohjelmassa. Esitiedot: Ohjelmointitaito ja Johdatus
todennäköisyyslaskentaan sekä Lineaarialgebra ja matriisilaskenta I-II
(tai vastaavat tiedot). Kurssikoe ke 10.12. klo 16-19.
582216 Johdatus tekoälyyn (4 credits,
lectured in Finnish)
University Lecturer Tomi Pasanen, 4 September - 10 November, Thu
10-12, Fri 12-14, Exactum Ck112.
58093 Merkkijonomenetelmät (6 credits,
lectured in Finnish)
University Lecturer Juha Kärkkäinen, 2 September - 9 October, Tue, Thu
12-14 Exactum B222 (I period)
Merkkijonohahmon tarkkojen ja likimääräisten esiintymien
etsiminen. Merkkijonojen järjestäminen ja hakurakenteet. Tekstin
indeksointi. Pakollinen harjoitustyö (työmäärä 1-2 op) jatkuu periodin
II aikana itsenäisenä työskentelynä (ei säännöllistä kontaktiopetusta)
5. viikolle asti. Esitietovaatimus: Tietorakenteet ja Laskennan
mallit; kurssin Algoritmien suunnittelu tiedoista on
hyötyä. Erilliskokeeseen voivat osallistua vain ne, jotka ovat
suorittaneet kurssiin kuuluvan harjoitustyön ennen koetta. Kurssikoe
ke 15.10. klo 9-12.
T-61.3040 Statistical signal modeling
(5 credits, lectured in Finnish, course can be taken in English on
request)
Jaakko Peltonen (I-II periods)
The course topic is statistical modeling of data, focusing on
linear time-series models. Topics include discrete-time random
processes, linear models for signals, Wiener-filtering, introduction
to adaptive filtering, power spectrum estimation, maximum likelihood
and least-squares estimation
Stochastic modelling (6-8 credits)
Professor Elja Arjas, Period I, Monday 10-12 and Thursday 12-14 in
room Exactum B120. Note: First lecture September 18 (I period)
The lecture course is based on the monograph P.
Guttorp: Stochastic Modeling of Scientific Data, Chapman and Hall/CRC
(1995). The following excerpt from the Preface provides a description of
the course: Traditionally, applied probability texts contain a fair amount
of probability theory, varying amounts of applications, and no data.
Occasionally an author may touch upon how one would go about fitting a
model to data, or use data to develop a model, but rarely is this topic
given much weight. On the other hand, the few texts on inference for
stochastic processes mostly dwell at length upon the interesting twists
that occur in statistical theory when data no longer can be assumed iid.
But, again, they rarely contain any data. The intent of this text is to
present some probability models, some statistics relevant to these models,
and some data that illustrate some of the points made. Prerequisites:
basics of probability calculus and likelihood-inference, with some
knowledge of elementary stochastic processes providing an advantage.
582487 Tiedon tiivistämisen tekniikat (4 credits,
lectured in Finnish)
Adjunct Professor Veli Mäkinen 28 October - 4 December Tue, Thu 12-14
Exactum B222 (II period)
Kurssilla tutustutaan tiedon tiivistämisen perustekniikoihin kuten
entropiakoodauksiin, Ziv-Lempel koodeihin, PPM sekä Burrows-Wheeler
menetelmiin. Painopiste on tehokkaissa tekstin
pakkaus-/purkualgoritmeissa. Uutena sovelluskohteena kurssilla
käsitellään tietorakenteiden tiivistämistä. Esitietovaatimus: Tekstin
indeksointiin liittyvät asiat kurssilta
Merkkijonomenetelmät. Kurssikoe ti 9.12. klo 9-12.
Spring 2009
Bioinformatics courses / Spring 2009
57391 Evolution and the theory of games (5 credits)
University Lecturer Stefan Geritz, weeks 3-9, Tue 14-16 B321, Thu
12-14 B322, Exactum (III period)
A game is a mathematical model of a situation of conflict of
interests in which the optimal strategy for one player not only
depends on his own decisions but also on the decisions of his
opponents. The course is an introduction to game theory with emphasis
on applications in evolutionary and behavioural biology.
Genome-wide association mapping (6-8 credits)
Adjunct Professor Mikko Sillanpää, weeks 3-9, Mon 10-12 C323, Thu
10-12 B120, Exactum (III period)
The course covers statistical methods and
issues involved in association mapping, with a special emphasis on genome-
wide level genetic analyses. Replication (verification), confounding
factors, and meta-analysis are considered as important themes in the
course. Literature: Duncan C. Thomas: Statistical Methods in Genetic
Epidemiology, Oxford University Press (2004). Prerequisites: Basic concepts
of probability calculus and of likelihood based methods in statistical
inference. There are no molecular biological prerequisites for the course.
Familiarity with the contents of the course "Statistical Methods in
Genetics" is recommended, however.
T-61.5050 High-Throughput Bioinformatics (5-7 credits)
Lecturing Researcher Jarkko Salojärvi, Thu 12-14 T5/A133, T-building (III-IV periods)
The course introduces computational and statistical methods
for analyzing modern high-throughput biological data, in particular
microarray data, and their use in systems biology. Necessary
biological background is reviewed briefly.
T-61.5090 Image Analysis in Neuroinformatics (5 credits)
Adjunct Professor Ricardo Vigario, Wed 12-14 T4 / A238, T-building (III-IV periods)
The goal of the seminar is to give an overview of some of the
main biomedical signal processing techniques, with clear emphasis to
neural data. Topics range from artifact removal and image enhancement
to pattern classification and diagnostic decision.
582605 Metabolic Modeling (4 credits)
Professor Juho Rousu, 10 March - 24 April, Tue, Fri 14-16 Exactum B119 (IV period)
Computational methods in the analysis of metabolic networks, including
graph theoretic and stoichiometric approaches, and the analysis of
metabolic fluxes. Prerequisites: 582313 Introduction to
Bioinformatics, Basics of Linear Algebra. Course exam Wed 29th April
from 9.00 to 12.00.
582604 Practical Course in Biodatabases (2-4 credits)
PhD Jarno Tuimala, Adjunct Professor Siru Varvio, 12 January - 17
February, Mon, Tue 14-16 Exactum D122 (III period, practical work in
the first half of the IV period)
Techniques for accessing and integrating data in biological databases
are studied. The course contains project work. Prerequisities:
Introduction to Bioinformatics, basics of databases, basic programming
skills.
Phylogenetic data analyses (6-8 credits)
Adjunct Professor Siru Varvio, Monday 15.30-17.00 in Exactum D123, Friday 12-14 in Exactum BK106 (IV period)
The course focus is on phylogenetic inference from DNA
sequences by parsimony, maximum likelihood and bayesian methods and
program packages. Please note the updated Friday lecture time!
52930 Practical course in protein Analysis (5 credits)
Professor Liisa Holm, 12-30 January 2009, 12.00-17.00 Viikki
Infocenter room 170
This course will introduce aspects of bioinformatic analysis of
protein sequence and structure, leading to inference of protein
function. Participants will be given test sequences to analyse,
accompanied by handouts and online help information. Demonstrators
will be on hand to assist the participants during practical
sessions. The course covers application of a variety of bioinformatics
tools in a biological context, and would ideally suit biologists,
geneticists, chemists and biochemists interested in integrating
bioinformatics techniques into their research. It is also suitable for
people from other backgrounds, with some biological knowledge, who are
keen to learn about applying computational techniques to biological
problem solving. Please note that basic knowledge of proteins,
internet usage, and PC skills are required, however, no programming
skills are needed or will be used during the course.
Registration in WebOodi.
Seminar: Computational systems biology (3 credits)
Adjunct Professor Sampsa Hautaniemi, Mon 13-15 Biomedicum meeting room
1 and 8-9 (III-IV periods)
First meeting on Monday 19 January 2009.
The seminar will cover some key areas of systems biology from the
computational point of view. Tentative topics: Reconstruction of
biological networks, Metabolic engineering at system level, Signal
transduction, Protein interaction, Gene regulation, Global properties
of biological systems, Integration and visualization of heterogenous data.
Spatial models in ecology and evolution (8 credits)
PhD Eva Kisdi, Weeks 3-9 and 11-18, Tue and Thu 12-14 Exactum B120 (III-IV periods)
This course will explore how to model the dynamics and evolution of
populations with spatial movement, spatial constraints and spatial
interactions between organisms. We start with a brief introduction
to classic mathematical ecology. In spatial ecology, we study
diffusion, travelling waves, pattern formation and Turing
instability, stochastic patch occupancy models, structured
metapopulation models, probabilistic cellular automata and coupled
map lattices. Next, we investigate three topical issues of
evolutionary biology where spatial structure plays a crucial role:
the evolution of mobility (dispersal); the origin of new species via
specialisation to different environments; and the evolution of
altruistic behaviour.
Prerequisites: The basics of analysis, linear algebra and probability theory
T-61.6070 Special course in bioinformatics I (3-7 credits)
Professor Harri Lähdesmäki, Wed 10-12, Thu 10-12, T-building (IV period)
The purpose of this course is to give postgraduate level
knowledge on bioinformatics or a related field. The actual contents of
the course vary from year to year. The course can be lectured, or
arranged in seminar form.
Courses in biology and medicine / Spring 2009
- Genetics courses in Spring 2009
Currently the list below contains only the core MBI courses in biology and medicine.
399671 Practical bioinformatics (8-10 credits)
Course continues from Autumn 2008.
399672 Biology for methodological scientists (8 credits)
Course continues from Autumn 2008.
399673 Measurement techniques for bioinformatics (6 credits)
Adjunct Professor Outi Monni, Biomedicum (III-IV periods)
This lab course introduces students to the most fundamental molecular
biology technologies. The course is particularly tailored for students
with no previous molecular biology background. Prerequisites: 399672
Biology for methodological scientists modules I and II.
Courses in computer science, mathematics and statistics / Spring 2009
Courses listed below are suitable for MBI minor subject studies. Other courses maybe be suitable as well - discuss with your student counsellor!
Computational methods in statistics (6 credits)
Lecturer to be announced (III period)
This course focuses on modern
statistical methods which are computationally intensive. The topics include
the following: simulation of probability distributions, Monte Carlo
integration and importance sampling, the EM algorithm and MCMC methods,
which are a group of statistical methods based on the simulation of Markov
chains.
582633 Diskreetin optimoinnin harjoitustyö
(2 credits, lectured in Finnish)
University Lecturer Juha Kärkkäinen (III period)
Optimointialgoritmin toteuttaminen ja optimointiohjelmiston
käyttäminen. Esitiedot: Diskreetti optimointi.
Generalised linear models (5-8 credits)
Doc. Juha Karvanen (IV period)
Generalised linear models are an extension
of the usual linear model, where the response variable may be discrete or
have a skew distribution. The course covers the generic likelihood-based
estimation and test theory of generalised linear models. The most important
special cases, like logistic and log-linear models, are treated in more
detail.
Hierarchical models (6-8 credits)
Course cancelled!
This course gives an overview of hierarchical
modelling and the use of latent variables in model building. Several well-
known models can be interpreted as special cases of hierarchical models
which are characterised by some dependence structure between the
observations. Methods for estimation, model diagnostics and model selection
are reviewed and compared. Prerequisites: linear models, generalised linear
models.
T-61.5010 Information visualization (5 credits)
Kai Puolamäki (III period)
The course teaches how to visualize information effectively by
using the statistical methods, combined with knowledge of the human
perception and the basics of data graphics.
Longitudinal data analysis (8 credits)
Lecturer to be announced (III-IV periods)
In longitudinal studies
individuals are measured repeatedly through time. It is then possible to
separate the age and cohort effects, i.e., distinguish changes within the
individual from differences across individuals. The course gives on
overview of longitudinal data analysis, including hierarchical models,
marginal models and latent process models. Literature: Diggle, Heagerty,
Liang, Zeger: Anaylysis of longitudinal data. Oxford University Press
(2002). Prerequisites: generalised linear models.
T-61.5140 Machine learning: advanced probabilistic methods (5 credits)
Jaakko Hollmen (III-IV periods)
The course covers probabilistic concepts in machine learning:
independence, conditional independence, mixture models, EM algorithm,
Bayesian networks, computational algorithms for exact and approximate
inference, sampling, prior distributions. The course emphasizes
understanding fundamental principles and their use in practical
machine learning problems.
T-61.3050 Machine learning: basic principles
(5 credits)
Kai Puolamäki (III-IV periods)
The topics include the background principles needed to
understand and apply the models of machine learning. After the course,
the student is able to apply the basic methods to data and understand
new models based on these principles.
T-61.3020 Principles of pattern recognition
(4 credits, lectured in Finnish, can be taken in English on
request)
Erkki Oja (III period)
This course provides basic knowledge on pattern recognition
methods and their applications. The course covers the basic concepts
of pattern recognition and introduces statistical, syntactical,
structural, and neural pattern recognition methods.
582421 Satunnaisalgoritmit
(8 credits, lectured in Finnish)
Professor Jyrki Kivinen, 12 January - 18 February Mon, Wed 10-12
Exactum B222, 9 March - 22 April Mon,
Wed 10-12 Exactum B222 (III-IV periods)
Satunnaisalgoritmeissa tarvittavia todennäköisyyslaskennan
tekniikoita. Satunnaisalgoritmien suunnitteluperiaatteita. Esimerkkejä
mm. verkkoteoriasta, tietorakenteista ja laskemisesta. Esitiedot:
Algoritmien suunnittelu ja analyysi sekä Johdatus
todennäköisyyslaskentaan tai vastaavat tiedot. Kurssikirja:
M. Mitzenmacher, E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press
2005. Kurssikokeet ma 23.2. klo 16-19 ja ke 29.4. klo 16-19.
Statistical software tools (3-6 credits)
Lecturer to be announced (IV period)
By the means of exercises and
practical work, the students will learn how a statistician can utilize
certain software tools. The software packages include the following. The
R system for data analysis and graphics, a commercial computer algebra
system, the Bugs system for Bayesian analysis of statistical models using
MCMC methods, and the LaTeX system for typesetting documents, especially
suitable for producing documents containing mathematical formulae.
582634 Tiedon louhinta (4 credits,
lectured in Finnish)
University Lecturer Marko Salmenkivi, 11 March - 24 April Wed 12-14,
Fri 10-12 Exactum B222 (IV period)
Tiedon louhinnassa tutkitaan usein suuria aineistoja, joista pyritään
löytämään uutta, mielenkiintoista ja hyödyllistä tietoa. Kurssi antaa
yleiskuvan tiedonlouhintaprosessin eri vaiheista, tyypillisistä
tiedonlouhintatehtävistä ja niissä käytetyistä menetelmistä. Kurssin
painopiste on toistuvien hahmojen etsinnässä ja
satunnaistamismenetelmissä. Esitiedot: Tietorakenteet (tai vastaavat
tiedot) sekä ohjelmointitaito. Erilliskokeessa kurssin voi suorittaa
myös kirjatenttinä tenttimällä teoksen Tan P., Steinbach M. & Kumar
V.: Introduction to Data Mining. Pearson, 2006. Kurssikoe ma 27.4. klo
16-19.
582635 Tiedon louhinnan harjoitustyö (2 credits,
lectured in Finnish)
University Lecturer Marko Salmenkivi (IV period intensive phase)
Kurssilla sovelletaan tiedon louhinnan menetelmiä
käytäntöön. Opiskelija voi suorittaa opintojakson kahdella tavalla:
joko 1) toteuttamalla tehtävänä annetun louhinta-algoritmin ja
analysoimalla sillä annettua aineistoa; tai 2) louhimalla tietoa
annetusta aineistosta laajemmalla menetelmien kirjolla käyttäen
esim. jotakin soveltuvaa valmisohjelmistoa. Kummassakin vaihtoehdossa
opiskelija kirjoittaa työskentelynsä tuloksista
tutkimusraportin. Esitiedot: Tiedon louhinta.
582636 Todennäköisyysmallit (4 credits,
lectured in Finnish
Professor Petri Myllymäki, 13 January - 19 February Tue, Thu 16-18
Exactum B222 (III period)
Johdatus bayesiläiseen mallintamiseen ja data-analyysiin. Kurssilla
keskitytään erityisesti monimuuttujamenetelmiin ja
Bayes-verkkoihin. Esitietovaatimus: Johdatus koneoppimiseen tai
vastaavat tiedot. Kurssikoe pe 27.2. klo 9-12.
582637 Todennäköisyysmallien harjoitustyö (2 credits,
lectured in Finnish)
Professor Petri Myllymäki, 12 March - 23 April Thu 16-18 Exactum B222
(IV period)
Harjoitustöissä toteutetaan ja testataan todennäköisyysmallinnuksen
menetelmiä, ja tulokset raportoidaan kirjoittamalla tutkielma ja
pitämällä posteriesitelmä. Esitiedot: Todennäköisyysmallit.
Unsupervised machine learning (4-6 credits)
Professor Aapo Hyvärinen, 11 March - 24 April 2009 (IV period)
Lectures are on Wednesdays and Fridays, 14:15-15:45 at lecture hall C222. Exercice
sessions every week, time and place to be announced.
Unsupervised
learning is one of the main streams of machine learning, and closely
related to exploratory data analysis and data mining. This course describes
some of the main methods in unsupervised learning. In recent years, machine
learning has become heavily dependent on statistical theory which is why
this course is somewhere on the borderline between statistics and computer
science. Emphasis is put both on the statistical (rather Bayesian)
formulation of the methods as well as on their computational
implementation. The goal is not only to introduce the methods on a
theoretical level but also to show how they can be implemented using
scientific computing environments such as Matlab or R. Computer projects
are an important part of the course.
Prerequisites: Basic courses in analysis (including vector analysis),
linear algebra I&II, introduction to probability, introduction to
statistical inference. (Preferably also some more statistics courses.)
Language courses
993735 Academic Writing for Students in English-Medium Master's
Degree Programmes (2 credits)
Autumn 2008
Target programmes: Bioinformatics, Geoinformatics, Atmospheric & Biospheric Sciences & other programmes at the Kumpula campus, plus Forest Ecology & Economy
Teachers: K. Pitkänen & R. Siddall
Place: Exactum (See below)
Times: Fridays 10-14
- 1 5.9. Group session (Exactum DK116) - KP
- 2 12.9. Individual consultation (Exactum language teachers' room) - RS
- 3 19.9. Individual consultation (Exactum language teachers' room) - KP
- 4 26.9. Individual consultation (Exactum language teachers' room) - RS
- 5 3.10. Individual consultation (Exactum language teachers' room) - KP
- 6 10.10. Individual consultation (Exactum language teachers' room) - RS
- 7 17.10. Group session (Exactum DK116) - KP
993734 Academic Writing for Students in English-Medium Master's
Degree Programmes 1 (2 credits)
Spring 2009
Target programmes: Bioinformatics, Geoinformatics, Atmospheric &
Biospheric Sciences & other programmes at the Kumpula and Viikki
campuses
Teachers: K. Pitkänen & R. Siddall
Place: Exactum, DK118
Times: Fridays 12.15-15.45
- Session 1: 16 January (KP)
- Session 2: 23 January (RS)
- Session 3: 30 January (KP)
- Session 4: 6 February (RS)
- Session 5: 13 February (KP)
- Session 6: 20 February (RS)
- Session 7: 27 February (KP)
Academic Writing courses are organized by the Language Support for English-Medium Master's Programmes project.
Teaching at individual departments
- Department of Computer Science, University of Helsinki
- Department of Mathematics and Statistics, University of Helsinki
- Department of Information and Computer Science, Helsinki University of Technology
- Genetics courses at Department of Biological and Environmental Sciences, University of Helsinki
Location guide
Exactum, Kumpula Campus, University of Helsinki |
T-building (computer science building), Otaniemi, TKK |
Biomedicum, Meilahti Campus, University of Helsinki |
Biocenter, Viikki Campus, University of Helsinki |