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Matrices

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn

 ∈ Rm×n

Rectangular array of data: elements are real numbers.

Metabolic modeling, Spring 2007, University of Helsinki 1



Metabolic networks

• Metabolic networks can be modelled as bipartite graphs

– Reactions ρi transform substrate metabolites to product metabolites

ρ1 : A→ B + C ρ2 : B→ D ρ3 : D→ E ρ4 : C + F→ E
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Metabolic networks as matrices
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By studying the properties of the stoichiometric matrix with linear

algebra we get information about the corresponding metabolic network!
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Basic matrix operations

• Transpose AT of A: Interchange rows and columns.

– AT = [aik]T = [aki]

• Sum of matrices A and B of the same size

– A + B = [aik] + [bik] = [aik + bik]

• Scalar multiple of matrix A:

– αA = α[aik] = [αaik]
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Matrix-vector multiplication

Ax =


a11 a12 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn




x1

x2
...

xn

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj

 = b

Symbolically
×
×
×
×

 =


← − − →
← − − →
← − − →
← − − →



↑
|
|
↓


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In practice

 2 3
6 4
1 0

 (
5
−2

)
=

 ?
?
?



Metabolic modeling, Spring 2007, University of Helsinki 6



 2 3
6 4
1 0

 (
5
−2

)
=

 2 · 5 + 3 · (−2)
6 · 5 + 4 · (−2)
1 · 5 + 0 · (−2)

 =

 4
22
5


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Or

 2 3
6 4
1 0

 (
5
−2

)
= 5 ·

 2
6
1

− 2 ·

 3
4
0

 =

 4
22
5


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Alternative presentation of matrix-vector multiplication:

Denote the column vectors of the matrix A by aj. Then

b = Ax = (a1a2 . . .an)


x1

x2
...

xn

 =
n∑

j=1

xjaj

• The vector b is a linear combination of the columns of A.

• The column space of A consists of all vectors b that can be stated as

linear combinations of columns of A.
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Solving a set of linear equations

Ax =


a11 a12 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn




x1

x2
...

xn

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj

 = b

If xi’s are unknown, this represents a system of linear equations
a11x1 +a12x2 + . . . + a1nxn = b1

a21x1 +a22x2 + . . . + a2nxn = b2
...

am1x1 +am2x2 + . . . + amnxn = bm
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Solving a set of linear equations

• Matrix notation becomes handy when a system of linear equations is

solved

• Use Gaussian elimination to transform an augmented matrix [A|b] to

row echelon form

• Use back substitution to solve the system
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Solving a set of linear equations

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1
2x1 +3x2 +x3 = 4

• Augmented matrix  1 2 1 3
3 −1 −3 −1
2 3 1 4


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Row echelon form

• A matrix is in row echelon form if

1. The first nonzero entry in each row is 1

2. If row k does not consist entriely of zeros, the number of leading

zero entries in row k + 1 is greater than the number of leading zero

entries in row k

3. If there are rows whose entries are all zero, they are below the rows

having nonzero entries  1 4 2
0 1 3
0 0 1


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Gaussian elimination

• Elementary row operations to transform a matrix to row echelon form:

1. Interchange two rows

2. Multiply a row by a nonzero real number

3. Replace a row by its sum with a multiple of another row 1 2 1 3
3 −1 −3 −1
2 3 1 4

→
 1 2 1 3

0 −7 −6 −10
0 −1 −1 −2

→
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Gaussian elimination

 1 2 1 3
0 −7 −6 −10
0 −1 −1 −2

→
 1 2 1 3

0 1 6/7 10/7
0 0 −1/7 −4/7

→
 1 2 1 3

0 1 6/7 10/7
0 0 1 4


• By backsubstitution:

x3 = 4
x2 = 10/7− 6/7 ∗ 4 = −2
x1 = 3− 2 ∗ (−2)− 4 = 3
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Reduced row echelon form

• Matrix A is in reduced row echelon form if

1. A is in row echelon form

2. All other elements of the column in which the leading entry 1 occurs

are equal to zero.

• From a reduced row echelon form of the augmented matrix a solution

can be directly read (if the system is consistent and fully determined) 1 0 0 5
0 1 0 4
0 0 1 2


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Reduced row echelon form

• Gauss-Jordan reduction to transform matrix A to reduced row echelon

form by using elementary row operations:

1. Sort the rows of A so that upper rows have fever than or the same

number of zero entries before the first nonzero entry as the lower

rows.

2. Let i = 1; Repeat until i’th row Ri contains only zeros.

(a) Multiply the row Ri of A by 1/aik, where aik is the first nonzero

element of Ri. (aik ← 1)

(b) For all rows Rj, j 6= i: Substract ajkRi from Rj. (ajk ← 0)

(c) i = i + 1
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Consistency

• If a linear equation system has at least one solution, it is said to be

consistent. Otherwise the system is inconsistent.

• Linear equation system Ax = b is consistent if and only if b is in the

column space of A. Otherwise the system is inconsistent.

• For an inconsistent system one can look for a solution x̂ minimizing the

norm of residual vector Ax̂− b
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Vector norms

The most common vector norms are

• 1-norm: ‖x‖1 =
∑n

i=1 |xi|

• Euclidean norm: ‖x‖2 =
√∑n

i=1 x2
i

• max-norm: ‖x‖∞ = max1≤i≤n |xi|

• all of the above are special cases of the Lp-norm (or p-norm):

‖x‖p = (
∑n

i=1 xp
i )

1/p
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Linear Independence

• Given a set of vectors (vj)n
j=1 in Rm, m ≥ n, consider the set of linear

combinations y =
∑n

j=1 αjvj for arbitrary coefficients αj.

• The vectors (vj)n
j=1 are linearly independent, if∑n

j=1 αjvj = 0 if and only if αj = 0 for all j = 1, ..., n.

• A set of m linearly independent vectors of Rm is called a basis in Rm:

any vector in Rm can be expressed as a linear combination of the basis

vectors.
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Example

The column vectors of the matrix

[v1 v2 v3 v4] =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


are not linearly independent, as

α1v1 + α2v2 + α3v3 + α4v4 = 0

holds for α1 = α3 = 1, α2 = α4 = −1.
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Rank of a matrix

• The rank of a matrix is the maximum number of linearly independent

column vectors.

– rank of a matrix = dimension of a subspace span by the columns

(rows) of the matrix

• A square matrix A ∈ Rn×n with rank n is called nonsingular, and it

has an inverse A−1 satisfying AA−1 = A−1A = I.

– For linear equation system Ax = b, x = A−1b
– Moore-Penrose pseudoinverse generalizes the result for m× n matri-

ces.

– Least squares solution for inconsistent system.
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Example

The 4× 4 matrix
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


has rank 3.
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Nullspace of the matrix

• The nullspace N(A) of matrix A is a set of all solutions to the

homogeneous system Ax = 0.

– N(A) = {x ∈ Rn|Ax = 0}

• The dimension of nullspace (rank of matrix spanning the nullspace) is

called nullity.

Let A be an m× n matrix. Then rank(A) + N(A) = n.

Metabolic modeling, Spring 2007, University of Helsinki 24



Fully determined linear equation systems

• Let Ax = b define a linear equation system, A is m× n matrix.

• Linear equation system is fully determined if rank(A) = n. Then, the

nullity of A = 0, and the linear equation system has a unique (least

squares) solution.

• In Gaussian elimination, n pivoting operations possible.
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Underdetermined linear equation systems

• Linear equation system is underdetermined if rank(A) < n. Then, the

nullity of A > 0, and the linear equation system has infinitely many

(least squares) solutions.

– Any vector from the null space can be added to the solution to obtain

a new one.

– Fever independent equations than unknowns. We have n − rank(A)
free variables that we can assign arbitrary values and solve for other,

dependent variables.

– Only rank(A) pivoting operations possible for A in Gaussian elimina-

tion.
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Examples

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1
2x1 +3x2 +x3 = 4

 1 2 1
3 −1 −3
2 3 1

 ∗
 x1

x2

x3

 =

 3
−1
4


• Rank of A = 3, fully determined, unique solution (x1 = 3, x2 =
−2, x3 = 4).
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Examples

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1

(
1 2 1
3 −1 −3

)
∗

 x1

x2

x3

 =
(

3
−1

)

• Rank of A = 2, underdetermined, also e.g. (x1 = 16/7, x2 =
−8/7, x3 = 3) is a solution.
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Examples

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1
4x1 +x2 −2x3 = 2

 1 2 1
3 −1 −3
4 1 −2

 ∗
 x1

x2

x3

 =

 3
−1
2


• Rank of A = 2, underdetermined. Why?
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Examples

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1
2x1 +3x2 +x3 = 4
3x1 +6x2 +3x3 = 8

1 2 1
3 −1 −3
2 3 1
3 6 3

 ∗
 x1

x2

x3

 =


3
−1
4
8


• Rank of A = 3, fully determined, inconsistent. Why?
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Examples

x1 +2x2 +x3 = 3
3x1 −x2 −3x3 = −1
4x1 +x2 −2x3 = 1

 1 2 1
3 −1 −3
4 1 −2

 ∗
 x1

x2

x3

 =

 3
−1
1


• Rank of A = 2, underdetermined, inconsistent. Why?
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Condition number

• For any a 6= 1 the matrix A =
(

a 1
1 1

)
is nonsingular and has the

inverse A−1 = 1
a−1

(
1 −1
−1 a

)
.

• As a→ 1, the norm of A−1 tends to infinity.

• Nonsingularity is not always enough!

• Define the condition number of a matrix to be κ(A) = ‖A‖‖A−1‖.

• Large condition number means trouble!
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Orthogonality

• Two vectors x and y are orthogonal, if xTy = 0.

• Let qj, j = 1, . . . , n be orthogonal, i.e. qT
i qj = 0, i 6= j. Then they

are linearly independent. (Proof?)

• Let the set of orthogonal vectors qj, j = 1, . . . ,m in Rm be normalized,

‖q‖ = 1. Then they are orthonormal, and constitute an orthonormal
basis in Rm .

• A matrix Rm×m 3 Q = [q1 q2 . . . qm] with orthonormal columns is

called an orthogonal matrix.
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Why we like orthogonal matrices

• An orthogonal matrix Q ∈ Rm×m has rank m (since its columns are

linearly independent).

• QTQ = I. QQT = I. (Proofs?)

• The inverse of an orthogonal matrix Q is Q−1 = QT .

• The Euclidean length of a vector is invariant under an orthogonal

transformation Q: ‖Qx‖2 = (Qx)TQx = xTx = ‖x‖2.

• The product of two orthogonal matrices Q and P is orthogonal:

XTX = (PQ)TPQ = QTPTPQ = QTQ = I.
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