Metabolic Modeling, Spring 2007, Solutions for Exercise 5

27.4.2007

- 1. Consider a reaction with Michaelis-Menten type kinetics $v_k = \frac{V_{max}S_i}{K_m + S_i}$. Give a detailed derivation for the equations
 - (a) ϵ_i^k (b) $\pi_{K_m}^k$
 - (c) $\pi^k_{V_{max}}$
 - (a) Denote $f(S_i) = V_{max}S_i$ and $g(S_i) = K_m + S_i$. Now $f'(S_i) = V_{max}$ and $g'(S_i) = 1$. We get

$$\epsilon_i^k = \frac{S_i}{v_k} \frac{\partial v_k}{\partial S_i} = \frac{S_i g(S_i)}{f(S_i)} \cdot \frac{f'(S_i)g(S_i) - g'(S_i)f(S_i)}{g(S_i)^2} =$$
$$= \frac{S_i g(S_i)}{V_{max} S_i} \frac{V_{max}g(S_i) - V_{max}S_i}{g(S_i)^2}$$
$$= \frac{g(S_i) - S_i}{g(S_i)} = \frac{K_m}{K_m + S_i}$$

(b) Denote
$$g(K_m) = K_m + S_i$$

$$\pi_{K_m}^k = \frac{K_m}{v_k} \frac{\partial v_k}{\partial K_m} = \frac{K_m g(K_m)}{V_{max} S_i} \frac{\partial}{\partial K_m} \frac{V_{max} S_i}{g(K_m)}$$
$$= \frac{K_m V_{max} S_i g(K_m)}{V_{max} S_i} \frac{-1}{g(K_m)^2} = \frac{-K_m}{K_m + S_i}$$

(c)

$$\pi_{V_{max}}^{k} = \frac{V_{max}}{v_{k}} \frac{\partial v_{k}}{\partial V_{max}} = \frac{V_{max}(K_{m} + S_{i})}{V_{max}S_{i}} \frac{\partial}{\partial V_{max}} \frac{V_{max}S_{i}}{K_{m} + S_{i}} = \frac{V_{max}(K_{m} + S_{i})}{V_{max}S_{i}} \frac{S_{i}}{K_{m} + S_{i}} = 1$$

2. A simple rate law for irreversible reaction subject to competitive inhibition is given by

$$v = \frac{V_{max}S}{(K_m(1+I/K_I)+S)}$$

where I denotes the concentration of the inhibitor and K_I the equilibrium constant for binding/releasing the inhibitor.

Derive π -elasticity coefficient π_I for inhibitor concentration and interpret the derived coefficient: how do the inhibitor concentration I and the equilibrium constant K_I affect the reaction rate.

Denote $g(I) = K_m(1 + I/K_I) + S$, and $g'(I) = \frac{\partial}{\partial I}g(I) = K_m/K_I$ π -elasticity is given by

$$\pi_{I} = \frac{I}{v} \frac{\partial v}{\partial I} = \frac{Ig(I)}{V_{max}S} \cdot \frac{\partial}{\partial I} \frac{V_{max}S}{g(I)}$$
$$= \frac{Ig(I)}{V_{max}S} \cdot \frac{-V_{max}Sg'(I)}{g(I)^{2}} = \frac{-Ig'(I)}{g(I)}$$
$$= \frac{-IK_{m}/K_{I}}{K_{m}(1+I/K_{I})+S} = \frac{-I}{K_{I}+I+SK_{I}/K_{m}} = \frac{-I}{K_{I}(1+S/K_{m})+I} \quad (1)$$

The following properties can be noticed:

- $\pi_I < 0$, thus an increase in inhibitor concentration will result in a decrease of the reaction rate
- π_I is a convex function of I, so in very high inhibitor concentrations, the response is toned down
- A high value of K_I also tones down the response.
- 3. Give a detailed derivation for the equations given on Lecture 10, slides 28 and 30, for the flux control coefficients FCC_1^J, FCC_2^J and the concentration control coefficients CCC_1^S, CCC_2^S .
 - (a) Flux control coefficients. From flux control connectivity theorem $(\sum_{k=1}^{r} FCC_{v_{k}}^{J_{j}} \epsilon_{S_{i}}^{v_{k}} = 0)$ we get $FCC_{2}^{J} = FCC_{1}^{J} \frac{-\epsilon_{S}^{J}}{\epsilon_{S}^{2}}$. Insert this to the flux control summation theorem $(\sum_{k=1}^{r} FCC_{k}^{j} = 1)$ to obtain $FCC_{1}^{J} = 1 FCC_{1}^{J} \frac{-\epsilon_{S}^{1}}{\epsilon_{S}^{2}}$ which simplifies by rearranging the terms into

$$FCC_1^J(1 - \frac{-\epsilon_S^1}{\epsilon_S^2}) = 1$$

and further into

$$FCC_1^J \frac{\epsilon_S^2 + \epsilon_S^1}{\epsilon_S^2} = 1$$

which gives the result

$$FCC_1^J = \frac{\epsilon_S^2}{\epsilon_S^2 + \epsilon_S^1}$$

An analogous derivation gives the coefficient $FCC_2^J = \frac{-\epsilon_s^J}{\epsilon_s^2 + \epsilon_s^1}$.

(b) Concentration control coefficients. From concentration control connetivity theorem $CCC_1^S \epsilon_S^1 + CCC_2^S \epsilon_S^2 = -1$ we obtain $CCC_2^S = -\frac{CCC_1^S \epsilon_S^1 + 1}{\epsilon_S^2}$

Substituting this to the concentration control summation theorem $CCC_2^S + CCC_1^S = 0$ we get

$$CCC_1^S - \frac{CCC_1^S \epsilon_S^1 + 1}{\epsilon_S^2} = 0,$$
$$CCC_1^S - CCC_1^S \frac{\epsilon_S^1}{\epsilon_S^2} = \frac{1}{\epsilon_S^2},$$

and

$$CCC_1^S(\frac{\epsilon_S^2-\epsilon_S^1}{\epsilon_S^2}) = \frac{1}{\epsilon_S^2}$$

which gives the results $CCC_1^S = \frac{1}{\epsilon_S^2 - \epsilon_S^1}$ An analogous derivation gives the coefficient $CCC_2^S = \frac{-1}{\epsilon_S^2 - \epsilon_S^1}$

4. Consider a metabolic network with three reactions $r_1 : A \to B, r_2 : B \to C, r_3 : B \to D$. Assume that the elasticity coefficients have been determined as $\epsilon_B^1 \approx -0.5, \epsilon_B^2 \approx 0.25, \epsilon_B^3 \approx 0.5$, and the flux control coefficient $FCC_{v_1}^{J_2} \approx 0.25$ for the flux J_2 from B to C.

Determine the coefficients $FCC_{v_2}^{J_2}$ and $FCC_{v_3}^{J_2}$.

Hint: use the flux summation $(\sum_{k=1}^{r} FCC_{k}^{j} = 1)$ and connectivity $(\sum_{k=1}^{r} FCC_{v_{k}}^{J_{j}} \epsilon_{S_{i}}^{v_{k}} = 0)$ theorems.

(a) Solution by pen and paper:

Substitute $FCC_1^2 = 0.25$ to the flux control summation theorem $FCC_1^2 + FCC_2^2 + FCC_3^2 = 1$ to obtain $FCC_3^2 = 0.75 - FCC_2^2$. Substitute the above value for FCC_3^2 , the elasticity coefficients, and $FCC_1^2 = 0.25$ to the flux control connectivity theorem $FCC_1^2\epsilon_B^1 + FCC_2^2\epsilon_B^2 + FCC_3^2\epsilon_B^3 = 0$ to obtain

$$0.25 \cdot (-0.5) + FCC_2^2 \cdot 0.25 + (0.75 - FCC_2^2) \cdot 0.5 = 0$$
$$FCC_2^2 = 1$$

and $FCC_3^2 = 0.75 - FCC_2^2 = -0.25$

(b) Solution by Matlab:

Notice that when the elasticities are given, both flux control summation and flux control connectivity are linear equations with FCC's as the unknowns.

Construct coefficient matrix
$$A = \begin{bmatrix} 1.0000 & 1.0000 & 1.0000 \\ -0.5000 & 0.2500 & 0.5000 \\ 1.0000 & 0 & 0 \end{bmatrix}$$
 and
vector $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ where the first row represents the flux control

vector $b = \begin{bmatrix} 0\\ 0.25 \end{bmatrix}$ where the first row represents the flux control

summation, the next line the flux control connectivity with the elasticities as the coefficients, and the third line represents the given coefficient $FCC_1^2 = 0.25$.

Solve FCC = pinv(A)b to obtain $FCC = (0.25, 1, -0.25)^T$