4 N

Stoichiometric network analysis I

In stoichiometric analysis of metabolic networks, one concerns the effect of the

network structure on the behaviour and capabilities of metabolism.

Questions that can be tackled include:

e Discovery of pathways that carry a distinct biological function (e.g. glycolysis)
from the network, discovery of dead ends and futile cycles, dependent subsets
of enzymes

e Identification of optimal and suboptimal operating conditions for an organism

e Analysis of network flexibility and robustness, e.g. under gene knockouts
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Stoichiometric coefficients '

Soitchiometric coefficients denote the proportion of substrate and product

molecules involved in a reaction. For example, for a reaction
r: A+ Bw— 2C,

the stoichiometric coefficients for A, B and C' are —1, —1 and 2, respectively.

e Assignment of the coeefficients is not unique: we could as well choose
—1/2,-1/2,1 as the coefficients

e However, the relative sizes of the coeefficients remain in any valid choice.

Note! We will denote both the name of a metabolite and its concentration by
the same symbol.
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Stoichiometry and reaction rates I

e The rate of change of concentration of metabolites is the most fundamental

quantity in stoichiometric models

e Assume a reaction
r: A+ B+ 2C,

operates at some rate or velocity v (arbitrary units e.g. mol/hour)

e Then, the change of concentration of the reactants and the product are given
by the reaction rate multiplied by the shoichiometric coefficients

% dA dC
dt dt dt
e Thus, A and B are consumed at the rate of the reaction, C' is produced at the

double rate.
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Reversible reactions '

e Many of metabolic reactions are reversible,
r: A+ B = 2C,
so they can work in either direction, depending on the conditions within the cell

e In stoichiometric models a reversible reaction can be modelled in two ways:

— As a single reaction that can operate from left to right, indicated by positive
reaction rate v > 0 or right to left, indicated by negative reaction rate v < 0.

— As two separate reactions ' : A+ B +— 2C and r" : 2C — A + B, both with

non-negative reaction rates v’,v” > 0.
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Concentration and rate vectors '

e Let the reaction R; operate with rate v;

e We collect the individual reaction rates to a rate vector v = (vy,...,v,)T

e Similarly, the concentration vector X (t) = (X1(t),..., X, (t)) contains the
concentration of each metabolite in the system at time ¢
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Stoichiometric vector and matrix '

e The stoichiometric coefficients of a - A

: 0
reaction are collected to a vector s,
0
e In s, there is a one position for each
o . Al-1
metabolite in the metabolic system,
and the stoichiometric co-efficient of 0
the reaction are inserted to Sp=-10
appropriate positions, e.g. for the Bl-1
reaction 0
r: A+ Bw— 2C, -1 0
Cl2]
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The stoichiometric vectors can be
combined into the stoichiometric

matrix S. producing it.

In the matrix S, the is one row for
each metabolite and one column for
each reaction.

The coefficients s.; along the j’th
column are the stoichiometric S =
coeefficients of of the reaction j.

The coefficients along the i’th row
denote the relationship between the

S11

Si1

Si1

Stoichiometric matrix '

metabolite M;’s concentration and

the reactions consuming or

Slj

Slj

S1k

Sik

Sik
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e Consider the set of reactions from
the penthose-phospate pathway:

e The stoichiometric matrix is a

10-by-7 matrix:

Ri: BG6P + NADP+ 4/ 6PGL + NADPH
Rs: 6PGL + H,0 X 6PG
Rs: 6PG + NADP* 2’ R5P + NADPH

rpe

Rs: R5P & X5P
Rs: aG6P & 3G6P
Rs: aG6P & 3F6P
R BG6P & GF6P

BG6P
aG6P
BF6P
6PGL
6 PG
R5P
X5P
NADP™*
NADPH
H>0O

0 0
0 0

0
-1 0
1 -1
0 1
0 0
0 -1
0 1
-1 0

o o o o O

o O O =

o O O o o o o o

Example: stoichiometric matrix I

|
|

o O O o o o o =

~

|
H 1

o O O o o o o = o
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/ Systems equations (1/2) I

e Suppose that reactions Ry, R5 and R; operate at rates 2, 1 (left to right) and

~

—2 (right to left), respectively

e Multiply the reaction rates with stoichiometric coefficients to obtain the rates
of change of concentration of SG6P caused by each reaction:

Ri:(-1)2=-2 Rs:1-1=1, Ry: (1) (=2) =2
e The net rate of change SG6P is therefore

d[BG6P]
dt
thus the system is accumulating 3G6P

= 2+142=1,

Ri: BG6P + NADP+ %/ 6PCGL + NADPH
Rs: aG6P & 3G6P
R7: BG6P % BF6P Ssgep=1—1 0 0 0 1 0 _1}
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Systems equations (2/2) I

In a network of n metabolites and r reactions, the dynamics of the system are

characterized by the systems equations

dX; <
dtz :Zsijl}j, for ¢ = 1,...,77,

j=1

e X, is the concentration of the ith metabolite
e v; is the rate of the jth reaction and
e s;; is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of

a is the sum of metabolite flows to and from the metabolite.
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Systems equation example I

e Assume our example metabolic

~

imption!

bn!

, dBG6P
network has the following rate ﬁdt = —1lvgr, + lvr, — lvr, =0
vector v = (1,1,0,0,1,0,0) daG6P
e —1lvr, — lvgry = —1 = net consu
e Let us compute the rate of change dBF6P
for metabolites g~ 1vRe Tlurs =0
o d6GPL
R.: BG6P + NADP+ 2/ 6PGL + NADPH —— = lug, —lug, =0
Ra: 6PGL + H,0 2 6PG d6 PG .
Ra: 6PG + NADP* and e + NADPH pran lvr, — lvr, = 1 = net productis
_ rpe dR5P
R4: RHP i X5P Z—i = lvry — lvr, =0
Rs: aG6P & 3G6P dX5P
Rs: aG6P & GF6P g tvra =0
: 9Ri INADPH
R7: fG6P = OF6P — = lvr, + lvg, = 1 = net productis
dNADP™*
— = —1lvg, — lvr; = —1 = net const
k dH-0 .
7t = —Ivr, = —1 = net consumption
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Systems equations in matrix form I

e The systems equation can be expressed in vector form as

dX; <
i > sijv; = Siv,

j=1

where S; contains the stoichiometric coefficients of a single metabolite, that is

a row of the stoichiometric matrix

e All the systems equations of different equations together can then be expressed

by a matrix equation

aX
¢ _ g
P

e Above, the vector

dX  (dX;  dXa\'
dt \ dt ' dt

collects the rates of concentration changes of all metabolites
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Defining the system boundary I

When analysing a metabolic system we need to consider what to include in our
system

1. Metabolites and reactions internal to the cell: this is a closed system with no
matter flow to and from outside the system (cell)

2. (1) + exchange reactions transporting matter accross the cell membrane: this

is an open system with the possibility of matter flow to and from the system

3. (1) + (2) + Metabolites outside the cell: This is again closed system with no
matter flow to and from the system (cell 4+ external metabolites)

/
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Defining the system boundary I

e Our example system is a closed one: we do not have exchange reactions

carrying to or from the system.

e We can change our system to an open one, e..g by introducing a exchange
reaction Rg := aG6P feeding aG6P into the system and another reaction
Rg : X5P = to push X5P out of the system

Ri: BG6P + NADP* 2%/ 6PQL + NADPH
Rs: 6PGL + H.0 %4 6PG

R3: 6PG + NADP' ¢ R5P + NADPH
Rs: R5P & X5P

Rs: aG6P & 3G6P

Rs: aG6P & GF6P

Ry: BC6P & GF6P
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System boundary and the stoichiometric matrix I

The stoichiometric matrix S = S;,; can be partitioned into according the system

boundary:

e S,,: contains the stoichiometric coefficients of internal metabolites with respect

to internal reactions

o S..., contains the stoichiometric coeflficients of internal metabolites w.r.t.

exchange reactions

] Internal metabolites

j External metabolites
-«

Internal Exchange
reactions reactions

/
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Example I
The stoichiometric matrix of our extended example contains two extra columns,
corresponding to the exchange reactions Rg := aG6P and Rg : X5P =
BG6P [-1 0 0 0 1 0 -1 0 O]
aG6P 0 0 0 o -1 -1 0 1 O
GBF6P 0 0 0 0 1 1 0 O
6PGL 1 -1 0 0 0 0 O 0 O
6 PG 0 1 -1 0 0 0 0O 0 O
R5P 0 0 1 -1 0 0 0O 0 O
X5P 0 0 0 1 0 0 O 0 -1
NADPT |[-1 0 -1 0 0 0 O 0 O
NADPH | 1 0 1 0 0 0 0O 0 O
HO |0 -1 0 0 O 0 0 0 O]
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Steady state analysis (1/2) I \

e Most applications of stoichiometric matrix assume that the system is in so

called steady state

e In a steady state, the concentrations of metabolites remain constant over time,

thus the derivative of the concentration is zero:

dX; i .

J=1

e The requires the production equal consumption of each metabolite, which

forces the reaction rates to be invariant over time.
e The steady-state reaction rates are also called the fluzes

e Note: Biologically, live cells do not exhibit true steady states, but in suitable
conditions (e.g. continuous bioreactor cultivations) steady-state can be

satisfied approximately. Pseudo-steady states or quasi-steady states are

formally correct terms, but rarely used
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Steady state analysis (2/2) I

e The requirements of non-changing concentrations

r

dX; :
o :Zsijvj:O, fori=1,...,n

j=1
constitute a set of linear equations constraining to the reaction rates v;.

e We can write this set of linear constraints in matrix form with the help of the

stoichiometric matrix S and the reaction rate vector v

aX
a2V

e A reaction rate vector v satisfying the above is called a flux vector.
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Null space of the stoichiometrix matrix (1/2) I

e Any flux vector v that the cell can maintain in a steady-state is a solution to

the system of equations
Sv=0

e The null space of the stoichiometric matrix
N(S) ={u|Su =0}
contains all valid flux vectors

e Therefore, studying the null space of the stoichiometric matrix can give us

important information about the cell’s capabilities

o

~

/
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Null space of the stoichiometric matrix (2/2) I

The null space N(S) is a linear vector space, so all properties of linear vector

spcaes follow, e.g:

e N(S5) contains the zero vector, and closed under linear combination:
Vi,Vgy € N(S) —> 1V] +QVy € N(S)

e The null space has a basis {ki,...,k,}, a set of ¢ < min(n,r) linearly
independent vectors, where r is the number of reactions and n is the number of
metabolites.

e The choice of basis is not unique, but the number ¢ of vector it contains is
determined by the rank of S.
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Null space and feasible steady state rate vectors I

e The kernel K = (ky,...,k,) of the stoichiometric matrix formed by the above
basis vectors has a row corresponding to each reaction. (Note: the term
’kernel” here has no relation to kernel methods and SVMs)

e K characterizes the feasible steady state reaction rate vectors: for each feasible
flux vector v, there is a vector b € R? such that Kb =v

e In other words, any steady state flux vector is a linear combination
b1ki +---+ bqkq

of the basis vectors of N(IV).
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4 N

Identifying dead ends in metabolism I

e From the matrix K, one can identify reactions that can only have zero rate in a
steady state.

e Such reactions may indicate a dead end: if the reaction is not properly
connected the rest of the network, the reaction cannot operate in a steady state

e Such reactions necessarily have the corresponding row K; identically equal to
zero, K; =0
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Proof outline '

e This can be easily proven by contradiction using the the equation Kb = v:

e Assume reaction R; is constrained to have zero rate in steady state, but

assume for some ¢, k;; # 0.
e Then we can pick the ¢’th basis vector of K as the feasible solution v = k;.

e Then v; = kj; # 0 and the jth reaction has non-zero rate in a steady state.
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/ Enzyme subsets (1/2) I

e An enzyme subset is a group of giving vo = —v18;1/8;2.

~

hich, i teady stat
enzymes wilcl, 1 a steady state, e That is, the rates of the two

must always operate together so , ,
reactions are linearly dependent.

that their reaction rates have a fixed

ratio. A

e Consider a pair of reactions R; and .

R5 in the metabolic network that L

form a linear sequence.

1

e Let B be a metabolite that is an 5
intermediate within the pathway

2

produced by R; and consumed by @ .

Rs for which the steady-state .
assumption holds. Due to the ] {
steady state assumption, it must C

k hold true that /

V181 + V282 =0
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4 A

Enzyme subsets (2/2) I

Also other than linear pathways may be Ro
force to operate in ’'lock-step’. In the . m Ra
figure below t, R1 and R4 form an A -t B D - D

enzyme subset, but R2 and R3 are not U

in that subset.
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Identifying enzyme subsets I

e Enzyme subsets are easy to recognize from the matrix K: the rows

corresponding to an enzyme subset are scalar multiples of each other.

e That is, there is a constant a that satisfies K; = a/;; where K; denotes the

7’th row of the kernel matrix K

e This is again easy to see from the equation

Kb =v.
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4 N

Proof outline '

e Assume that reactions along rows j, 7’ in K correspond to an enzyme subset.

e Now assume contrary to the claim that the rows are not scalar multiples of

each other. Then we can find a pair of columns i,4’, where K;; = aK;/; and
Kji’ = ﬁKj’i’ and « # 5

e Both columns 4,7’ are feasible flux vectors. By the above, the rates of j and j’
differ by factor « in the flux vector given by the column ¢ and by factor 3 in

the flux vector given by the column 7’.

e Thus the ratio of reaction rates of j,j' can vary and the reactions are not force
to operate with a fixed ratio.
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Independent components I

Finally, the matrix K can be used to discover subnetworks that can work
independently from the rest of the metabolism, in a steady state.

Such components are characterized by a block-diagonal K: K;; # 0 for a subset of

rows (J1,...,Js) and a subset of columns (i1,...,%:). Given such a block we can
change b;,,...,b;, freely, and that will only affect v;,,...,v;,

i1

N
[
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