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Stoichiometric network analysis

In stoichiometric analysis of metabolic networks, one concerns the effect of the

network structure on the behaviour and capabilities of metabolism.

Questions that can be tackled include:

• Discovery of pathways that carry a distinct biological function (e.g. glycolysis)

from the network, discovery of dead ends and futile cycles, dependent subsets

of enzymes

• Identification of optimal and suboptimal operating conditions for an organism

• Analysis of network flexibility and robustness, e.g. under gene knockouts
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Stoichiometric coefficients

Soitchiometric coefficients denote the proportion of substrate and product

molecules involved in a reaction. For example, for a reaction

r : A + B 7→ 2C,

the stoichiometric coefficients for A, B and C are −1,−1 and 2, respectively.

• Assignment of the coeefficients is not unique: we could as well choose

−1/2,−1/2, 1 as the coefficients

• However, the relative sizes of the coeefficients remain in any valid choice.

Note! We will denote both the name of a metabolite and its concentration by

the same symbol.
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Stoichiometry and reaction rates

• The rate of change of concentration of metabolites is the most fundamental

quantity in stoichiometric models

• Assume a reaction

r : A + B 7→ 2C,

operates at some rate or velocity v (arbitrary units e.g. mol/hour)

• Then, the change of concentration of the reactants and the product are given

by the reaction rate multiplied by the shoichiometric coefficients

dA

dt
= −1 · v,

dA

dt
= −1 · v,

dC

dt
= 2 · v

• Thus, A and B are consumed at the rate of the reaction, C is produced at the

double rate.
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Reversible reactions

• Many of metabolic reactions are reversible,

r : A + B ⇌ 2C,

so they can work in either direction, depending on the conditions within the cell

• In stoichiometric models a reversible reaction can be modelled in two ways:

– As a single reaction that can operate from left to right, indicated by positive

reaction rate v > 0 or right to left, indicated by negative reaction rate v < 0.

– As two separate reactions r′ : A + B 7→ 2C and r′′ : 2C 7→ A + B, both with

non-negative reaction rates v′, v′′ ≥ 0.
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Concentration and rate vectors

• Let the reaction Ri operate with rate vi

• We collect the individual reaction rates to a rate vector v = (v1, . . . , vr)
T

• Similarly, the concentration vector X(t) = (X1(t), . . . , Xr(t))
T contains the

concentration of each metabolite in the system at time t
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Stoichiometric vector and matrix

• The stoichiometric coefficients of a

reaction are collected to a vector sr

• In sr there is a one position for each

metabolite in the metabolic system,

and the stoichiometric co-efficient of

the reaction are inserted to

appropriate positions, e.g. for the

reaction

r : A + B 7→ 2C,

sr =

·

·
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·

·
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Stoichiometric matrix

• The stoichiometric vectors can be

combined into the stoichiometric

matrix S.

• In the matrix S, the is one row for

each metabolite and one column for

each reaction.

• The coefficients s∗j along the j’th

column are the stoichiometric

coeefficients of of the reaction j.

• The coefficients along the i’th row

denote the relationship between the

metabolite Mi’s concentration and

the reactions consuming or

producing it.

S =























s11 · · · s1j · · · s1k

...
. . .

...
. . .

...

si1 · · · sij · · · sik

...
. . .

...
. . .

...

sl1 · · · slj · · · slk
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Example: stoichiometric matrix

• Consider the set of reactions from

the penthose-phospate pathway:

• The stoichiometric matrix is a

10-by-7 matrix:

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

S =

βG6P

αG6P

βF6P

6PGL

6PG

R5P

X5P

NADP+

NADPH

H2O

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−1 0 0 0 1 0 −1

0 0 0 0 −1 −1 0

0 0 0 0 0 1 1

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 0 0 0

−1 0 −1 0 0 0 0

1 0 1 0 0 0 0

0 −1 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Systems equations (1/2)

• Suppose that reactions R1, R5 and R7 operate at rates 2, 1 (left to right) and

−2 (right to left), respectively

• Multiply the reaction rates with stoichiometric coefficients to obtain the rates

of change of concentration of βG6P caused by each reaction:

R1 : (−1) · 2 = −2, R5 : 1 · 1 = 1, R7 : (−1) · (−2) = 2

• The net rate of change βG6P is therefore

d[βG6P ]

dt
= −2 + 1 + 2 = 1,

thus the system is accumulating βG6P

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R5: αG6P
gpi
⇔ βG6P

R7: βG6P
gpi
⇔ βF6P

Stoichiometric coefficients from matrix S

SβG6P =
[

−1 0 0 0 1 0 −1
]

Metabolic Modelling Spring 2007 Juho Rousu 9



'

&

$

%

Systems equations (2/2)

In a network of n metabolites and r reactions, the dynamics of the system are

characterized by the systems equations

dXi

dt
=

r
∑

j=1

sijvj , for i = 1, . . . , n

• Xi is the concentration of the ith metabolite

• vj is the rate of the jth reaction and

• sij is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of

a is the sum of metabolite flows to and from the metabolite.
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Systems equation example

• Assume our example metabolic

network has the following rate

vector v = (1, 1, 0, 0, 1, 0, 0)

• Let us compute the rate of change

for metabolites

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

dβG6P

dt
= −1vR1 + 1vR5 − 1vR7 = 0

dαG6P

dt
= −1vR5 − 1vR6 = −1 ⇒ net consumption!

dβF6P

dt
= 1vR6 + 1vR7 = 0

d6GPL

dt
= 1vR1 − 1vR2 = 0

d6PG

dt
= 1vR2 − 1vR3 = 1 ⇒ net production!

dR5P

dt
= 1vR3 − 1vR4 = 0

dX5P

dt
= 1vR4 = 0

dNADPH

dt
= 1vR1 + 1vR3 = 1 ⇒ net production!

dNADP+

dt
= −1vR1 − 1vR3 = −1 ⇒ net consumption!

dH20

dt
= −1vR2 = −1 ⇒ net consumption!
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Systems equations in matrix form

• The systems equation can be expressed in vector form as

dXi

dt
=

r
∑

j=1

sijvj = ST
i v,

where Si contains the stoichiometric coefficients of a single metabolite, that is

a row of the stoichiometric matrix

• All the systems equations of different equations together can then be expressed

by a matrix equation
dX

dt
= Sv,

• Above, the vector

dX

dt
=

(

dX1

dt
, . . . ,

dXn

dt

)T

collects the rates of concentration changes of all metabolites
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Defining the system boundary

When analysing a metabolic system we need to consider what to include in our

system

1. Metabolites and reactions internal to the cell: this is a closed system with no

matter flow to and from outside the system (cell)

2. (1) + exchange reactions transporting matter accross the cell membrane: this

is an open system with the possibility of matter flow to and from the system

3. (1) + (2) + Metabolites outside the cell: This is again closed system with no

matter flow to and from the system (cell + external metabolites)
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Defining the system boundary

• Our example system is a closed one: we do not have exchange reactions

carrying to or from the system.

• We can change our system to an open one, e..g by introducing a exchange

reaction R8 :⇒ αG6P feeding αG6P into the system and another reaction

R9 : X5P ⇒ to push X5P out of the system

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P
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System boundary and the stoichiometric matrix

The stoichiometric matrix S = Stot can be partitioned into according the system

boundary:

• Sint contains the stoichiometric coefficients of internal metabolites with respect

to internal reactions

• Sexch contains the stoichiometric coefficients of internal metabolites w.r.t.

exchange reactions
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Example

The stoichiometric matrix of our extended example contains two extra columns,

corresponding to the exchange reactions R8 :⇒ αG6P and R9 : X5P ⇒

βG6P

αG6P

βF6P

6PGL

6PG

R5P

X5P

NADP+

NADPH

H2O

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−1 0 0 0 1 0 −1 0 0

0 0 0 0 −1 −1 0 1 0

0 0 0 0 0 1 1 0 0

1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 −1

−1 0 −1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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Steady state analysis (1/2)

• Most applications of stoichiometric matrix assume that the system is in so

called steady state

• In a steady state, the concentrations of metabolites remain constant over time,

thus the derivative of the concentration is zero:

dXi

dt
=

r
∑

j=1

sijvj = 0, for i = 1, . . . , n

• The requires the production equal consumption of each metabolite, which

forces the reaction rates to be invariant over time.

• The steady-state reaction rates are also called the fluxes

• Note: Biologically, live cells do not exhibit true steady states, but in suitable

conditions (e.g. continuous bioreactor cultivations) steady-state can be

satisfied approximately. Pseudo-steady states or quasi-steady states are

formally correct terms, but rarely used
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Steady state analysis (2/2)

• The requirements of non-changing concentrations

dXi

dt
=

r
∑

j=1

sijvj = 0, for i = 1, . . . , n

constitute a set of linear equations constraining to the reaction rates vj .

• We can write this set of linear constraints in matrix form with the help of the

stoichiometric matrix S and the reaction rate vector v

dX

dt
= Sv = 0,

• A reaction rate vector v satisfying the above is called a flux vector.
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Null space of the stoichiometrix matrix (1/2)

• Any flux vector v that the cell can maintain in a steady-state is a solution to

the system of equations

Sv = 0

• The null space of the stoichiometric matrix

N(S) = {u|Su = 0}

contains all valid flux vectors

• Therefore, studying the null space of the stoichiometric matrix can give us

important information about the cell’s capabilities
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Null space of the stoichiometric matrix (2/2)

The null space N(S) is a linear vector space, so all properties of linear vector

spcaes follow, e.g:

• N(S) contains the zero vector, and closed under linear combination:

v1,v2 ∈ N(S) =⇒ α1v1 + αv2 ∈ N(S)

• The null space has a basis {k1, . . . ,kq}, a set of q ≤ min(n, r) linearly

independent vectors, where r is the number of reactions and n is the number of

metabolites.

• The choice of basis is not unique, but the number q of vector it contains is

determined by the rank of S.
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Null space and feasible steady state rate vectors

• The kernel K = (k1, . . . ,kq) of the stoichiometric matrix formed by the above

basis vectors has a row corresponding to each reaction. (Note: the term

’kernel’ here has no relation to kernel methods and SVMs)

• K characterizes the feasible steady state reaction rate vectors: for each feasible

flux vector v, there is a vector b ∈ R
q such that Kb = v

• In other words, any steady state flux vector is a linear combination

b1k1 + · · · + bqkq

of the basis vectors of N(N).
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Identifying dead ends in metabolism

• From the matrix K, one can identify reactions that can only have zero rate in a

steady state.

• Such reactions may indicate a dead end: if the reaction is not properly

connected the rest of the network, the reaction cannot operate in a steady state

• Such reactions necessarily have the corresponding row Kj identically equal to

zero, Kj = 0
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Proof outline

• This can be easily proven by contradiction using the the equation Kb = v:

• Assume reaction Rj is constrained to have zero rate in steady state, but

assume for some i, kji 6= 0.

• Then we can pick the i’th basis vector of K as the feasible solution v = ki.

• Then vj = kji 6= 0 and the jth reaction has non-zero rate in a steady state.
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Enzyme subsets (1/2)

• An enzyme subset is a group of

enzymes which, in a steady state,

must always operate together so

that their reaction rates have a fixed

ratio.

• Consider a pair of reactions R1 and

R2 in the metabolic network that

form a linear sequence.

• Let B be a metabolite that is an

intermediate within the pathway

produced by R1 and consumed by

R2 for which the steady-state

assumption holds. Due to the

steady state assumption, it must

hold true that

v1si1 + v2si2 = 0

giving v2 = −v1si1/si2.

• That is, the rates of the two

reactions are linearly dependent.

A

r1 D

r2

C

E

B

2

1

1

1

1

1
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Enzyme subsets (2/2)

Also other than linear pathways may be

force to operate in ’lock-step’. In the

figure below t, R1 and R4 form an

enzyme subset, but R2 and R3 are not

in that subset.

R4

R2

R3

R1
A DB D
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Identifying enzyme subsets

• Enzyme subsets are easy to recognize from the matrix K: the rows

corresponding to an enzyme subset are scalar multiples of each other.

• That is, there is a constant α that satisfies Kj = αKj′ where Kj denotes the

j’th row of the kernel matrix K

• This is again easy to see from the equation

Kb = v.
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Proof outline

• Assume that reactions along rows j, j′ in K correspond to an enzyme subset.

• Now assume contrary to the claim that the rows are not scalar multiples of

each other. Then we can find a pair of columns i, i′, where Kji = αKj′i and

Kji′ = βKj′i′ and α 6= β.

• Both columns i, i′ are feasible flux vectors. By the above, the rates of j and j′

differ by factor α in the flux vector given by the column i and by factor β in

the flux vector given by the column i′.

• Thus the ratio of reaction rates of j, j′ can vary and the reactions are not force

to operate with a fixed ratio.
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Independent components

Finally, the matrix K can be used to discover subnetworks that can work

independently from the rest of the metabolism, in a steady state.

Such components are characterized by a block-diagonal K: Kji 6= 0 for a subset of

rows (j1, . . . , js) and a subset of columns (i1, . . . , it). Given such a block we can

change bi1 , . . . , bit
freely, and that will only affect vj1 , . . . , vjs

j1

jsK  =

0

0
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