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Metabolic Control Analysis (MCA)

• The restriction imposed by MCA is that we only study effects of small

perturbations: what will happen if we ’nudge’ the metabolic system slightly of

its current steady state

• Mathematically, we employ a linearized system around the steady state, thus

ignoring the non-linearity of the kinetics.

• The predictions are local in nature; in general different for each steady state
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Coefficients of control analysis

The central concept in MCA is the control coefficient between two quantities

(fluxes, concentations, activities, . . . ) y and x:

cy
x =

(

x

y

∆y

∆x

)

∆x→0

• Intuitively, cy
x is the relative change of y in response of infinitely small change

to x
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Types of coefficients

• Elasticity coefficients quantify the sensitivity of a reaction rate to the change of

concentration or a parameter.

• Flux control coefficients quantify the change of a flux along a pathways in

response to a change in the rate of a reaction

• Concentration control coefficients quantify the change of concentration of some

metabolite Si in response of a change in the rate of a reaction

• Response coefficients quantify the change of a flux in response to a change

change in a parameter (e.g. kinetic parameters of an enzyme)
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ǫ-elasticity coefficient

ǫ-elasticity coefficient

ǫk
i =

Si

vk

∂vk

∂Si

quantifies the change of a reaction rate

vk in response to a change in the

concentration Si, while everything else

is kept fixed.

S1 S2

v1 v2 v3

perturbation

? ?

?

response
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π-elasticity coefficient

π-elasticity coefficient

πk
m =

pm

vk

∂vk

∂pm

is defined as the change of a reaction

rate vk in response to a change in a

parameter (kinetic constant, enzyme

concentration, inhibitors) S1 S2

v1 v3v2

K Vmaxm I

perturbation

?
response

parameters
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Flux control coefficients

The flux-control coefficient (FCC)

FCCj
k =

vk

Jj

∂Jj

∂vk

is defined as the change of flux Jj of a

given pathway, in response to a change

in the reaction rate vk.

S1 S2

v1 v3

S3

v4

v2

?

perturbation

?

?
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Concentration control coefficients

The concentration-control coefficient

(CCC)

CCCi
k =

vk

Si

∂Si

∂vk

is defined as the change of concentration

Si, in response to a change in the

reaction rate vk.

S1 S2

v1 v3v2

perturbation

??
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Response coefficients

The steady state S(p),J = v(S(p),p) is determined by the parameters p (kinetic

parameters of enzymes, external metabolite concentrations, temperature, pH,...)

Response coefficients quantify the direct effect of the parameters p to the steady

state (rather than via individual enzymatic reactions)

Given a perturbation to a parameter pm, the response coefficient of a flux Jj is

Rj
m =

pm

Jj

∂Jj

∂pm

and the response coefficient of a concentration Si is is

Ri
m =

pm

Si

∂Si

∂pm
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Summation theorems

The first summation theorem says that for each flux Jj the flux-control coefficients

must sum to unity
r

∑

k=1

FCCj
k = 1

Thus, control of a flux is shared across all enzymatic reactions

For concentration control coefficients we have

r
∑

k=1

CCCi
k = 0

Control of a concentration is shared across all enzymatic reactions, some exerting

positive control, other exerting negative control.
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Flux control connectivity theorems

Connectivity theorem tie elasticity coefficients ǫvk

Si
and control coefficients

FCC
Jj
vk , CCCSi

vk
together.

For flux control we have
r

∑

k=1

FCCJj

vk
ǫvk

Si
= 0

In our example we have FCCJ
1 ǫ1S + FCCJ

2 ǫ2S = 0 giving

FCCJ
1

FCCJ
2

=
ǫ2S
−ǫ1S

which shows that, everything else remaining constant, an increase in FCCJ
2 needs

to be countered with a decrease in ǫ2S
v1 v2

P2P1

v1 v2

S

J
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Concentration control connectivity

Similar connectivity theorems hold for concentrations.

We have
r

∑

k=1

CCCSh
vk

ǫvk

Si
= 0

for h 6= i. and
r

∑

k=1

CCCSi

vk
ǫvk

Si
= −1
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MCA example: simple junction

• Reaction R0 has constant flux

v0 = 0.1

• Reactions R1, R4 and R5

irreversible with mass action

kinetics v = k+S

• Reactions R2 and R3 reversible with

mass action kinetics v = k+S − k
−

P

• All kinetic constants equal

k+ = k
−

= 0.1

• Let us perform MCA analysis with

given steady state

• Results computed with the COPASI

simulator (www.copasi.org)

R2

R3

R1R0

R4

R5

B

C

D

A
0.1

0.05
0.05

0.05

0.05

0.1
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MCA example: simple junction

Elasticities ǫk
i = Si

vk

∂vk

∂Si

A B C D

R0 0 0 0 0

R1 1 0 0 0

R2 0 2 -1 0

R3 0 2 0 -1

R4 0 0 1 0

R5 0 0 0 1

R2

R3

R1R0

R4

R5

B

C

D

A
0.1

0.05
0.05

0.05

0.05

0.1
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MCA example: simple junction

Flux control coefficients FCCk
J = vk

J
∂J
∂vk

R0 R1 R2 R3 R4 R5

R0 1 0 0 0 0 0

R1 1 0 0 0 0 0

R2 1 0 0.25 -0.25 0.25 -0.25

R3 1 0 -0.25 0.25 -0.25 0.25

R4 1 0 0.25 -0.25 0.25 -0.25

R5 1 0 -0.25 0.25 -0.25 0.25

R2

R3

R1R0

R4

R5

B

C

D

A
0.1

0.05
0.05

0.05

0.05

0.1
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MCA example: simple junction

Concentration control coefficients

CCCk
i = vk

Si

∂Si

∂vk

R0 R1 R2 R3 R4 R5

A 1 -1 0 0 0 0

B 1 0 -0.25 -0.25 -0.25 -0.25

C 1 0 0.25 -0.25 -0.75 -0.25

D 1 0 -0.25 0.25 -0.25 -0.75

R2

R3

R1R0

R4

R5

B

C

D

A
0.1

0.05
0.05

0.05

0.05

0.1
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MCA example: control of an unbranched pathway

Let us consider an unbranched pathway

S0 ↔ S1 ↔ S2 . . . Sr−1 ↔ Sr

Assume that each reaction conforms to linear kinetics:

vi = kiSi−1 − k−iSi, i = 1, . . . , r

The reactions are in equilibrium (forward and backward flow equal) when

kiSi−1 = k
−iSi so the equilibrium constant is given by

Keq = qi =
ki

k−i

=
Si

Si−1
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MCA example: control of an unbranched pathway

The steady-state flux of the pathway can be expressed in analytical form as (proof

by induction w.r.t r)

J =
S0

∏r

j=1
qj − Sr

∑r
l=1

1/kl(
∏r

m=l qm)

and the flux control coefficients as

FCCJ
i =

1

ki

∏r
j=i qj

∑r
l=1

1/kl(
∏r

m=l qm)
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MCA example: control of an unbranched pathway

We consider the special case where the individual enzymes adhere to the same

kinetics, i.e. k+ = ki, k−
= k

−i and q = k+/k
−

> 1 (i.e. in equilibrium,

concentration of the product is higher than the substrate which means the

reactions have a tendency to happen in forward direction)

In this case the ratio of two successive flux control coefficients satisfy

FCCJ
i

FCCJ
i+1

=
(1/ki)

∏r
j=i qj

(1/ki+1)
∏r

j=i+1
qj

=
ki+1

ki

qi = q > 1

Thus, the reactions towards the beginning of the pathway have bigger control

coefficients than the reactions towards the end.
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MCA example: relaxation times

The relaxation time of an enzyme is a measure of the time it takes from the

enzyme to respond to the concentration changes of the substrates and products. It

is defined as

τi =
1

ki + k−i

Consider now the unbranched pathway of the previous example. We assume that

the individual kinetics of the enzymes may be different, i.e. ki 6= kj is possible, but

the equilibrium constants are equal to q = qi = 1 or ki = k−i.

This means that the equilibrium concentrations for substrates and products are all

equal.
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MCA example: relaxation times

As ki = k−i the relaxation time simplifies to τi = 1/(ki + k−i) = 1/(2ki)

The flux control coefficients

FCCJ
i =

1

ki

∏r
j=i qj

∑r

l=1
1/kl(

∏r

m=l qm)

simplify to the form

FCCJ
i =

1/ki
∑r

l=1
1

kl

=
τi

τ1 + · · · + τr

• The control is distributed among the enzymes of the pathway, no enzyme

controls the flux alone

• The higher the relaxation time of the enzyme, the more control it has over the

fluxes.
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MCA example: predicting the results of perturbation

• Let us consider optimization of the flux over a linear pathway of four reactions

by modulating enzyme concentrations.

• Assume the following kinetics vi = Ei(kiSi−1 − k
−iSi), initial enzyme

concentrations Ei = 1 and rate constants ki = 2, k
−i = 1 and concentrations of

external substrates S0 = S5 = 1

• The steady state flux J = 1 and the flux control coefficients

FCCJ
1 = 0.533, FCCJ

2 = 0.267, FCCJ
3 = 0.133, FCCJ

4 = 0.067 can be solved

from the above equations.
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MCA example: predicting the results of perturbation

According to MCA, increasing the concentration of a single enzyme Ei by p% will

increase the flux approximately by ∆i = FCCJ
i (p/100), giving

∆1 = 0.00533, ∆2 = 0.00267, ∆3 = 0.00133, ∆4 = 0.00067.

On the other hand, the underlying ’true’ kinetic model would predict

∆̃1 = 0.00531, ∆̃2 = 0.00265, ∆̃3 = 0.00132, ∆̃4 = 0.00066.

Thus MCA predicts fairly accurately the results of a small preturbation.
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MCA example: predicting the results of perturbation

Large preturbations would not be equally accurately predicted by MCA.

Assume we can double the total enzyme concentration
∑

Ei = 4 7→ 8. How should

the enzyme be allocated for best results?

• E1 7→ 5E1: MCA predicts ∆1 = 0.533 · 5 = 2.665, kinetic model gives

∆̃1 = 0.7441

• E4 7→ 5E4: MCA predicts ∆4 = 0.067 · 5 = 0.335, kinetic model 0.0563

• The maximal increase of 1.2871 for the flux is obtained by modifying all the

enzyme concentrations: E1 = 3.124, E2 = 2.209, E3 = 1.562, E4 = 1.105
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Determining Flux Control Coefficients

There are several ways by which the FCCs can be determined, they can broadly be

classified into direct and indirect methods:

• In indirect methods, one first determines the elasticity coefficients and uses the

MCA theorems to obtain the FCCs from there

• In direct methods, the FCCs are determined from flux and enzyme activity

measurements following but finite activity changes
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Determining elasticity coefficients

For determining elasticity coefficients several techniques exist,

• Computation from an available kinetic model for the enzymes. The limitation

is that in practise we may not know the enzyme kinetics, e.g. what inhibitors

and activators are relevant. (This approach was already looked at in the

previous lecture)

• Double modulation experiments, where one measures the activity of two

metabolites and the flux through the reaction step in three conditions (initial

and two perturbed conditions), and approximates the elasticity coefficients via

linear interpolation.
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Double modulation experiment

Consider a single reaction S → P and let J denote the flux trough it.

The total derivative of the flux J satisfies

dJ =
∂v

∂S
dS +

∂v

∂P
dP

Scale this by the steady state flux v = J to obtain

1

J
dJ =

∂v

∂S

1

v
dS +

∂v

∂P

1

v
dP

Substituting the equation for elasticity coefficients ǫv
S = ∂v

∂S
S
v

and the derivative

d lnS = 1

S
dS we finally get an expression

d lnJ = ǫv
Sd lnS + ǫv

P d lnP
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Double modulation experiment

Assume measurements J0, J1, J2 of the flux J and the concentrations S0, S1, S2 of

substrate S and P 0, P 1, P 2 of the product P , in three conditions (initial = 0,

perturbed = 1,2).

We make the linear approximations ∆i ln J = ln J i − ln J0, ∆i ln S = ln Si − lnS0

and ∆i lnP = lnP i − ln P 0

And substitute them to the above derived equation

∆1 lnJ = ǫv
S∆1 ln S + ǫv

P ∆1 lnP

∆2 lnJ = ǫv
S∆2 ln S + ǫv

P ∆2 lnP

From there the elasticity coefficients can be solved, if the equations are linearly

independent.
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Limitations of double modulation

The double modulation experiment suffers from some problems:

• The difficulty of obtaining perturbations giving equations that are truly

linearly independent: if the perturbations cause similar responses, we have

∆1 lnJ

∆1 ln S
≈

∆2 ln J

∆2 lnS

and the linear system is ill-conditioned and thus prone to experimental errors

• The reactions often are dependent on more than two parameters, so instead of

double modulation one needs to do an experimental plan k-fold modulation,

which may be costly.
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Direct methods for FCC determination

There are also direct experimental methods for FCC determination:

• Genetic alteration of expressed enzyme activity. This has the benefit that the

effect can be studied in vivo (enzyme in the context of the living cell) rather

than in vitro (enzyme isolated in a test tube). The limitation is that the

perturbations generated by the approach will in general not be small as

required by the MCA theory. Also the genetic engineering work is substantial.

• Adding purified enzyme to a cell-free extract. This is an approach that is prone

to experimental errors. This is a in vitro method, so the coefficients will also

not be the same as in a living cell.

• Adding the cell culture with specific inhibitors (in vivo). One measures the

change in flux as a function of the concentration of the inhibitor. Requires

knowing the enzymes response to the inhibitor (e.g. elasticity). Also, the

inhibitor needs to be truly specific so that it does not interact with anything

else but the enzyme in question.
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Generalizations and variants of MCA

MCA has been extended and generalized many ways

• Large perturbations: by assuming simple linearized kinetics,

v = e(Si − Si/K)

it possible to consider large pertubations rather than the infinitesimally small

as required by standard MCA. If the simple kinetics is not very far from the

truth, the predictions of this variant under large preturbations will typically be

better than standard MCA

• Control analysis of other variables than fluxes and concentrations. Such

variables include the transition time, free energy differences, growth rate, ...
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Generalizations and variants of MCA

• Time-dependent Control Coefficients. It is possible to perform MCA to other

than steady state systems. There one needs to define control operators

FCC(t), CCC(t) rather than single coefficients.

• Spatial heterogeneity instead of the standard ’well-mized bag-of-enzymes’

model.

• Hierarchical control analysis considers the change of enzyme activity due to

translation, proteolysis, binding to other proteins, and covalent modification. It

is also possible to consider mRNA concentrations explicitly, which are also

variables due to transcription and degradation.
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The End

• Tue 24.4. Recap lecture

• Fri 27.4. Exercise session

• Wed 2.5. Course exam, 9.00am-12.00pm, room B123
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