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Metabolic Control Analysis (MCA)

So far, we have looked at metabolism from to extreme views:

• Kinetic modeling, which aims at accurate mechanistic models of enzymatic

reactions. Limited to small systems in prectise

• Steady-state flux analysis, where large systems can be studied but in a limited

setting where the effect of regulation is side-stepped in the modeling

Metabolic control analysis can be seen as middle ground of the two extremes: in

MCA, we can model the network behaviour of the reactions and consider regulation

at the same time.
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Metabolic Control Analysis (MCA)

• The restriction imposed by MCA is that we only study effects of small

perturbations: what will happen if we ’nudge’ the metabolic system slightly of

its current steady state

• Mathematically, we employ a linearized system around the steady state, thus

ignoring the non-linearity of the kinetics.

• The predictions are local in nature; in general different for each steady state
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Questions of interest

• How does the change of enzyme activity affect the fluxes?

• Which individual reaction steps control the flux or concentrations?

• Is there a bottle-neck or rate-limiting step in the metabolism?

• Which effector molecules (e.g. inhibitors) have the greatest effect?

• Which enzyme activities should be down-regulated to control some metabolic

disorder? How to distrub the overall metabolism the least?
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Coefficients of control analysis

The central concept in MCA is the control coefficient between two quantities

(fluxes, concentations, activities, . . . ) y and x:

cy
x =

(

x

y

∆y

∆x

)

∆x→0

• Intuitively, cy
x is the relative change of y in response of infinitely small change

to x
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Coefficients of control analysis

The limit can be written as

cy
x =

x

y

∂y

∂x
=

∂ ln y

∂ ln x
,

by using the derivation rule d/dz ln z = 1/z, for z = x, y

• The normalization factor x/y makes the coefficient independent of units, the

same value will be obtained regardless of in which units y and x are expressed.

• Unnormalized coefficients ∂y
∂x

are sometimes used as well as some mathematical

derivations become easier
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Types of coefficients

• Elasticity coefficients quantify the sensitivity of a reaction rate to the change of

concentration or a parameter.

• Flux control coefficients quantify the change of a flux along a pathways in

response to a change in the rate of a reaction

• Concentration control coefficients quantify the change of concentration of some

metabolite Si in response of a change in the rate of a reaction

• Response coefficients quantify the change of a flux in response to a change

change in a parameter (e.g. kinetic parameters of an enzyme)
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ǫ-elasticity coefficient

ǫ-elasticity coefficient

ǫk
i =

Si

vk

∂vk

∂Si

quantifies the change of a reaction rate

vk in response to a change in the

concentration Si, while everything else

is kept fixed.

S1 S2

v1 v2 v3

perturbation

? ?

?

response
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ǫ-elasticity coefficient

Consider a reaction catalyzed by a

enzyme E, inhibited by effector I and

activated by effector A

Typical values (there are exceptions) for

elasticity coefficients satisfy the

following:

ǫv
S =

∂ ln v

∂ lnS
> 0, ǫv

P =
∂ ln v

∂ ln P
< 0

i.e. i.e. the more substrate the faster

the rate, the more product the slower

the rate

ǫv
A =

∂ ln v

∂ lnA
> 0, ǫv

I =
∂ ln v

∂ ln I
< 0

i.e. the higher activator concentration

the faster the rate, the higher inhibitor

concentration the slower the rate

S1 S2

v1 v2 v3

perturbation

? ?

?

response

Metabolic modeling Spring 2007 Juho Rousu 8



'

&

$

%

Example: ǫ-elasticity of a simple reaction

Consider an enzymatic reaction modelled with Michaelis-menten kinetics

vk =
VmaxSi

Km + Si

The elasticity with respect to the change in the substrate concentration is found to

be

ǫk
i =

Si

vk

∂vk

∂Si

=
Km

Km + Si

by applying the derivation rule d
dx

f(x)
g(x) = f(x)′g(x)−g(x)′f(x)

g(x)2

• The change of reaction rate in response to change of concentration of the

substrate is the lower the higher the concentration

• The reaction rate is a concave function of the substrate concentration

Metabolic modeling Spring 2007 Juho Rousu 9



'

&

$

%

π-elasticity coefficient

π-elasticity coefficient

πk
m =

pm

vk

∂vk

∂pm

is defined as the change of a reaction

rate vk in response to a change in a

parameter (kinetic constant, enzyme

concentration, inhibitors) S1 S2

v1 v3v2

K Vmaxm I

perturbation

?
response

parameters
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Example: π-elasticity of a simple reaction

Consider a reaction with the Michaelis-Menten rate equation

vk =
VmaxSi

Km + Si

The π-elasticity w.r.t. the Km-parameter is given by

πk
Km

=
Km

vk

∂vk

∂Km

= −
Km

Km + S

• Asymptotically tends towards −1 when S decreases i.e. for low substrate

situations the change of Km has linear effect on reaction rates

• Tends towards zero when S increases: in high substrate situations the change

of Km has little effect
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Control coefficients

We consider a vector

S = S(p)

of steady state concentrations and a vector

J = v(S(p),p)

of steady state fluxes, parametrized by p, which includes kinetic parameters of

enzymes and concentrations of external metabolites.

Consider a small perturbation of a reaction rate vk via perturbation of the

parameters p.

This will cause the system to seek a new steady state in the neighborhood of of the

original: J → J + ∆J, S → S + ∆S
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Questions of interest

We wish to capture the answers to the following questions

• What is the effect of rate change of a reaction to a particular flux?

• What is the effect of rate change of a reaction to a particular concentration?

Answers to the above questions are characterized by so called control coefficients.
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Flux control coefficients

The flux-control coefficient (FCC)

FCCj
k =

vk

Jj

∂Jj

∂vk

is defined as the change of flux Jj of a

given pathway, in response to a change

in the reaction rate vk.

S1 S2

v1 v3

S3

v4

v2

?

perturbation

?

?
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Flux control coefficients

• Unlike elasticity coefficients, FCC’s

are global: all reaction rate have

control over all fluxes, the strength

of control is quantified by the FCC.

• Note that the notion of ’control’

does not in general mean direct

regulatory relationship e.g. FCC4
3

denoting the control of v3 to the

flux from S1 to S3 will typiclly be

non-zero

S1 S2

v1 v3

S3

v4

v2

?

perturbation

?

?
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Concentration control coefficients

The concentration-control coefficient

(CCC)

CCCi
k =

vk

Si

∂Si

∂vk

is defined as the change of concentration

Si, in response to a change in the

reaction rate vk.

S1 S2

v1 v3v2

perturbation

??
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Response coefficients

The steady state S(p),J = v(S(p),p) is determined by the parameters p (kinetic

parameters of enzymes, external metabolite concentrations, temperature, pH,...)

Response coefficients quantify the direct effect of the parameters p to the steady

state (rather than via individual enzymatic reactions)

Given a perturbation to a parameter pm, the response coefficient of a flux Jj is

Rj
m =

pm

Jj

∂Jj

∂pm

and the response coefficient of a concentration Si is is

Ri
m =

pm

Si

∂Si

∂pm

Metabolic modeling Spring 2007 Juho Rousu 17



'

&

$

%

Theorems of MCA

• Unlike the elasticity coefficients, the control coefficients cannot be directly

computed from the kinetic parameters of the reactions, even in principle.

• In order to determine the coefficients we need both some MCA theory and

experimental data

• MCA theory consists of two sets of theorems:

– Summation theorems make statements about the total control of a flux or a

steady-state concentration

– Connectivity theorems relate the control coefficients to the elasticity

coefficients
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Summation theorems

The first summation theorem says that for each flux Jj the flux-control coefficients

must sum to unity
r

∑

k=1

FCCj
k = 1

Thus, control of a flux is shared across all enzymatic reactions

For concentration control coefficients we have

r
∑

k=1

CCCi
k = 0

Control of a concentration is shared across all enzymatic reactions, some exerting

positive control, other exerting negative control.
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Flux control summation

For getting soime intuition behind flux

control summation, consider the

unbranched pathway on the right.

What will happen to flux J if we

manipulate all three reaction rates by

small fraction α, i.e

δv1

v1
=

δv2

v2
=

δv3

v3
= α?

S1 S2

v1 v3v2

P1 P2

perturbation

flux J ?
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Flux control summation

The flux through the pathway must rise by the same amount: δJ
J

= α

Using the chain rule df(x,y)
dJ

= ∂f(x,y)
∂x

dx
dJ

+ ∂f(x,y)
∂y

dy
dJ

, distribute the change of flux

to the individual reactions:

δJ =
∂J

∂v1
δv1 +

∂J

∂v2
δv2 +

∂J

∂v3
δv3

Divide and multiply terms of the right by vi and divide all terms by J

δJ

J
=

v1

J

∂J

∂v1

δv1

v1
+

v2

J

∂J

∂v2

δv2

v2
+

v3

J

∂J

∂v3

δv3

v3

Substituting FCCJ
v = v

J
∂J
∂v

obtains:

δJ

J
= = FCCJ

1

δv1

v1
+ FCCJ

2

δv2

v2
+ FCCJ

3

δv2

v3
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Flux control summation

As α = δJ
J

= δv1

v1
= δv2

v2
= δv3

v3
we get

α =
δJ

J
=

= FCCJ
1

δv1

v1
+ FCCJ

2

δv2

v2
+ FCCJ

3

δv2

v3

= α(FCC1 + FCC2 + FCC3)

S1 S2

v1 v3v2

P1 P2

perturbation

flux J ?

This can be seen to adhere to the summation theorem
∑

j

FCCj = 1
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Concentration control summation

By similar argument we find that the distributed effect on the concentrations

satisfies
δS1

S1
= CCCS1

1

δv1

v1
+ CCCS1

2

δv2

v2
+ CCCS1

3

δv3

v3

Because of the steady state, for

concentrations S1 and S2 we have

δS1

S1
=

δS2

S2
= 0

S1 S2

v1 v3v2

P1 P2

perturbation

? ?
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Concentration control summation

Combining we get:

0 =
δS1

S1
= α(CCCS1

1 +CCCS1

2 +CCCS1

3 )

S1 S2

v1 v3v2

P1 P2

perturbation

? ?

which adheres to the summation theorem
∑

i

CCCS1

1 = 0
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Connecting elasticity and control coefficients

Flux control coefficients and elasticities are typically coupled: given a high

elasticity ǫk
i = Si

vk

∂vk

∂Si
the flux control coefficient FCCj

k = vk

Jj

∂Jj

∂vk
will typically be

low, and vice versa

In the example below, if the activity of enzyme catalyzing reaction v2 is dropped,

the concentration of S will rise.

If the reaction has high elasticity it will compensate the reduced activity thus

keeping the overall flux Jj close to the original.

v1 v2

P2P1

v1 v2

S

J
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Flux control connectivity theorems

This property is captured by so called connectivity theorems that tie elasticity

coefficients ǫvk

Si
and control coefficients FCC

Jj

vk , CCCSi
vk

together.

For flux control we have
r

∑

k=1

FCCJj
vk

ǫvk

Si
= 0

In our example we have FCCJ
1 ǫ1S + FCCJ

2 ǫ2S = 0 giving

FCCJ
1

FCCJ
2

=
ǫ2S
−ǫ1S

which shows that, everything else remaining constant, an increase in FCCJ
2 needs

to be countered with a decrease in ǫ2S
v1 v2

P2P1

v1 v2

S

J
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Concentration control connectivity

Similar connectivity theorems hold for concentrations.

We have
r

∑

k=1

CCCSh
vk

ǫvk

Si
= 0

for h 6= i. and
r

∑

k=1

CCCSi

vk
ǫvk

Si
= −1
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Calculating control coefficients

With the help of the summation and connectivity theorems and elasticities for

single reactions one can determine values for the control coefficients.

For the two step pathway below, we apply the summation theorem

FCCJ
1 + FCCJ

2 = 1 and the connectivity theorem FCCJ
1 ǫ1S + FCC2

2ǫ2S = 0 to solve

FCCJ
1 =

ǫ2S
ǫ2S − ǫ1S

, FCCJ
2 =

−ǫ1S
ǫ2S − ǫ1S

where the elasticity coefficients, computed from reaction kinetics can be

substituted.
v1 v2

P2P1

v1 v2

S

J
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Calculating control coefficients

Since typically we have ǫ1S < 0 and ǫ2S > 0 from

FCCJ
1 =

ǫ2S
ǫ2S − ǫ1S

, FCCJ
2 =

−ǫ1S
ǫ2S − ǫ1S

we see that both reactions exert positive control over the flux of the pathway

v1 v2

P2P1

v1 v2

S

J
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Calculating control coefficients

The concentration control coefficients fulfill

CCCS
v1

+ CCCS
v2

= 0, CCCS
v1

ǫv1

S + CCCS
v2

ǫv2

S = −1

which yields

CCCS
1 =

1

ǫv2

S − ǫv1

S

and

CCCS
2 =

−1

ǫv2

S − ǫv1

S

With ǫ1S < 0 and ǫ2S > 0 we get CCCS
v1

> 0 and CCCS
v2

< 0, that is the rise of first

reaction rate rises the concentration of S while rise of the second reaction rate

lowers the concentration of S
v1 v2

P2P1

v1 v2

S

J
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