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Sequence similarity 

 Genome rearrangement problem assumed we know 
for each gene in species A its counterpart in species B 
(if exists). 
 Orthologous genes – same ancestor in evolution. 

 Paralogous gene – gene dublication. 

 Homolog = Ortholog or Paralog 

 Often sequence similarity is the only way to predict 
whether two genes are homologs. 
 Very unlikely that same (long sequences) have evolved 

independently from different ancestors. 

 ... except horizontal gene transfer 
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Sequence similarity vs. distance 

 Let A and B be two strings from alphabet ∑, i.e., 
A,B∈ ∑*. 

 Many different ways to define the similarity or 
distance of A and B. 

 Recall Hamming distance dH(A,B). 
 Only defined when |A|=|B|. 

 What is the simplest measure to extend Hamming 
distance to different length strings? 
 For many purposes it is useful if the distance is a metric. 
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Edit distance 

 The most studied distance function extending 
Hamming distance is unit cost edit distance or 
Levenshtein distance. 
 dL(A,B) is the minimum amount of single symbol insertions, 

deletions, and substitutions required to convert A into B.  

 For example, on A=" tukholma" and B=" stockholm" we have 
dL(A,B)=4:  

 insert s, substitute u->o, insert c, delete a 

 .. or insert s, insert o, substitute u->c, delete a 

 .. or is there better sequence of edits???  
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- t u - k h o l m a 
s t o c k h o l m - 
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Dynamic programming 

 Way to compute edit distance optimally. 

 General algorithm principle: 
 Similar to Dijkstra's shortest path algorithm. 

 Abstract idea: Use induction to break the problem into smaller 
subproblems and suitable evaluation order so that subproblem 
solutions are available when needed. 

 Concrete example, Fibonacci numbers: 
 1,1,2,3,5,8,13,21,34,55,89,...   

 F(i)=F(i-2)+F(i-1) with F(1)=1, F(2)=1 

 The recursion to compute F(i) contains  
many identical subproblems. 
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Lightest path in a DAG 

6 

1 

3 

2 

4 

6 

5 

7 

DAG=directed acyclic graph 
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v 

Lightest path from s to v? 

1 2 3 4 5 6 7 Topological sort 
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cost=min(1)=1 

cost=min(2)=2 

cost=min(1+2,2+2)=3 

cost=min(2)=2 

cost=min(5,3+1)=4 

cost=min(4+2,3+4)=6 
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Edit distance 

 Consider an optimal listing of edits to convert the 
prefix a1a2...ai of A into prefix b1b2...bj of B 
corresponding to    dL(a1a2...ai,b1b2...bj): 
 If ai=bj we know that dL(a1a2...ai,b1b2...bj)=dL(a1a2...ai-

1,b1b2...bj-1) 

 Otherwise either ai is substituted by bj, or ai is deleted or bj is 
inserted in the optimal list of edits.  

 Hence, we have dL(a1a2...ai,b1b2...bj)= 
min(dL(a1a2...ai-1,b1b2...bj-1)+(if ai=bj then 0 else 1), 
       dL(a1a2...ai-1,b1b2...bj)+1,  
       dL(a1a2...ai,b1b2...bj-1)+1).  
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Edit distance matrix D[i,j] 

 Let D[i,j] denote dL(a1a2...ai,b1b2...bj). 

 Obviously D[0,j]=j and D[i,0]=i.  

 The induction from previous slide gives  
D[i,j]=min(D[i-1,j-1]+if (ai=bj) then 0 else 1, 
                D[i-1,j]+1,D[i,j-1]+1). 

 Matrix D can be computed row-by-row, column-by-
column (or in many other evaluation orders) so that 
D[i-1,j-1], D[i-1,j], and D[i,j-1] are available when 
computing D[i,j].  

 Running time to compute D[m,n] is O(mn). 
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Edit distance example 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i 

j 
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Edit distance matrix as a DAG 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

(i-1)*n+ 
j-1 

i 

j 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

1 

1 

1 

1 0 

cost=min(3+0,4+1,4+1)=3 cost=4 

cost=3 cost=4 



Finding the optimal alignment(s) 

 Two options: 
 (one alignment) Store pointer to each cell telling from which 

cell the minimum was obtained, follow the pointers from (m,n) 
to (0,0) and reverse the list; or 

 (all alignments) Backtrack from (m,n) to (0,0) by checking at 
each cell (i,j) on the path whether the value D[i,j] could have 
been obtained from cell (i,j-1), (i-1,j-1), or (i-1,j). Explore all 
directions. 

 All three directions possible. 

 Exponential number of optimal paths in the worst case. 
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Edit distance example 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

- t - u k h o l m a 
s t o c k h o l m - 

- t u - k h o l m a 
s t o c k h o l m - 



Searching homologs with edit distance? 

 Take DNA sequences A and B of two genes suspected 
to be homologs. 

 Edit distance of A and B can be huge even if A and B 
are true homologs. 
 One reason is silent mutations that alter DNA sequence so that 

the codons still encode the same amino acids. 

 In principle, A and B can differ in almost every third 
nucleotide. 

 Better compare protein sequences. 
 Some substitutions are more likely than the others... 

 Lot of tuning needed to use proper weights for operations.  

13 582313 Elements of Bioinformatics (4 cr), period II Better models 
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Other applications in bioinformatics 

 High-throughput next-generation sequencing (NGS) 
has raised again the issue of using edit distance. 
 Short DNA reads (50-1000 bp) a.k.a. patterns are measured 

from e.g. cells of a patient. 

 The reads are aligned against the reference genome. 

 Typically only SNPs and measurement errors need to be taken into 
account. 

 The occurrence of the read in the reference genome can be 
determined by finding the substring of the genome whose edit 
distance  (or Hamming distance) to the read is minimum. 

 Approximate string matching problem.   

 



NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing,  

de novo sequencing, metagenomics 
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gene 

DNA 

RNA 

Protein 

RNA-seq 

ChIP-seq 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

enrichment 

gtgatgcagctatattgatgtcgctgatcgt 

Targeted resequencing 

? de novo 

DNA ? 

DNA ? metagenomics 

acgaccgcgtatgctgatgctacgacgcactacgacactacgacgacgcatcgatcgagctagcgctgcgtcagcgacctagcgactacgacatcagcgactacgagctacgacagcgacgagagaggccgagctacacgagcatctagctgacagtcagtgatgcagctatattgatgtcgctgatcgtgctgatcgataatgatgtagcgcgatgctgcgcgtgctagtgatgtcagctgcgacgatcgtg tcgtgatgctagctagcgcatgctgctgcagctagctagtcgatcgcg 

epigenomics 
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Approximate string matching with dH 

 k-mismatches problem: Search all occurrences O of 
pattern P[1,m] in text T[1,n] such that P differs in at 
most k positions from the occurrence substring: 
 More formally: j  O is a k-mismatch occurrence position of P 

in T if and only if dH(P,T[j,j+m-1])≤k, where dH(A,B)=|{ i : 
A[i]≠B[i]}|. 

 Compare to the TotalDistance()-computation in the exercises.  

 Naive algorithm: 

 Compare P against each T[j,j+m-1] but skip as soon as k+1 
mismatches are encountered. 

 Expected linear time! 
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Approximate string matching with dL 

 k-errors problem is the approximate string matching 
problem with edit distance: 
 More formally: j  O is a k-errors occurrence (end)position of 

P in T if and only if dL(P,T[j',j])≤k for some j'. 

 Can be solved with the "zero the first row trick": 
 D[0,j]=0 for all j. 

 Otherwise the computation is identical to edit distance 
computation using matrix D. 

 Intuition: D[i,j] then equals the minimum number of edits to 
convert P[1,i] into some suffix of T[1,j]. 

 If D[m,j]≤k, then P can be converted to some substring T[j',j] 
with at most k edit operations. 

58093 String Processing Algorithms (4 cr), period II Faster algorithms 



NGS atlas and approximate string matching 1/3 

 Aligning reads from ChIP-seq and targeted 
resequencing works using basic approximate string 
matching, but... 
 Tens of millions of reads, spead is an issue. 

 Reference genome can be preprocessed to speed up search: 

 Suffix tree alike techniques work, but... 

 Suffix tree of human genome takes 50-200 GB! 

 More space-efficient index structures have been developed (e.g. 
based on Burrows-Wheeler transform) that drop the space to 
~3 GB. 

 

 

18 582487 Data Compression Techniques (4 cr), period III 



NGS atlas and approximate string matching 2/3 

 Reads from RNA-seq need more advanced 
alignment: 
 Read can span two exons.  

 Next week exercises study this problem.  
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ACGACCGATGCTTTATCTAACTCA 

ACGATCGATGCGT ...                      ...AGTTTATCTATCTACA 

exon exon 

ACGACCGATGCTTTATCTAACT-CA 

ACGATCGATGCTTTATCTATCTACA 



NGS atlas and approximate string matching 3/3 

 de novo sequencing and metagenomics are much 
harder since there is no reference genome. 
 Shortest approximate superstring (exercise 3.4). 

 How to modify edit distance computation for overlaps? 

 Next week exercise. 
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Variations of the theme 
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1 

3 

2 

4 

6 

5 

7 

s 
v 

Heaviest path from s to v? 

1 2 3 4 5 6 7 Topological sort 

5 
2 

1 
2 

1 

2 2 

0 

4 

cost=max(1)=1 

cost=max(2)=2 

cost=max(1+2,2+2)=4 

cost=max(2)=2 

cost=max(5,4+1)=5 

cost=max(5+2,4+4)=8 



Heaviest paths in sequence aligment  

 Consider the DAG of edit distance matrix. 

 Turn minimization into maximization. 

 Give score δ(ai,bj) for diagonal edges.  

 Give score δ(ai,-) for vertical edges. 

 Give score δ(-,bj) for horizontal edges. 

 Then heaviest path in the DAG corresponds to the 
global alignment with highest score. 
 Typically δ(ai,bj)=1if  ai=bj otherwise δ(ai,bj)=-μ. 

 Typically δ(ai,-)=δ(-,bj)=-σ. 

  

 

 



Global alignment DAG and recurrence 
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(i-1)*n+ 
j-1 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

-1 

-1 

-1 

-1 +1 

score=max(3+1,4-1,4-1)=4 

score=3 score=4 

score=4 

 

 

 

 

 

 S[i,j]=max(S[i-1,j-1]+δ(ai,bj), 

                S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)). 



Heaviest local paths in sequence aligment  

 Consider the heaviest path DAG corresponding to 
global alignment with highest score. 

 How to find heaviest subpaths (local path)? 

 Defining that empty path has score 0, it is enough 
to search for subpaths (local paths) with weight 
greater than 0. 

 No heaviest path can have a prefix with negative score. 

Add an edge with score 0 from node 0 to all nodes i*n+j. 

 

 



 

 

 

 

 

 

 S[i,j]=max(0,S[i-1,j-1]+δ(ai,bj), 

                S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)). 

Local alignment DAG and recurrence 
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(i-1)*n+ 
j-1 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

-1 

-1 

-1 

-1 +1 

score=max(0+0,1+1,-1-1,0-1)=2 

score=1 score=0 

score=-1 

0 
score=0 

0 

0 

0 

0 



Longest Common Subsequence (LCS) 

 Global alignment with  
 δ(ai,bj)=1 when ai=bj and otherwise δ(ai,bj)=-∞, and  

 δ(ai,-)=δ(-,bj)=0, 

gives the length of the longest common subsequence C of A 
and B: 

 Longest sequence C that can be obtained by deleting 0 or more 
symbols from A and also by deleting 0 or more symbols from B. 

 

 

 

 Connection: dID(A,B)=m+n-2*|LCS(A,B)|, where dID(A,B) is the edit 
distance with substitution cost ∞. 
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ACGACTGATCG 

AGCTACG 

AACGCATACGG 



M O N D A Y  3 . 1 0 .  1 2 - 1 4  B 2 2 2  
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Study group assignments 



Group 1 (random assignment at lecture) 

 Small parsimony problem: 

 Dynamic programming on fixed phylogenetic tree. 

 J & P pages 368-373. 

 (copies shared at lecture) 

 At study group, simulate the algorithm with some 
example. 
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Group 2 (random assignment at lecture) 

 RNA secondary structure prediction: 
 Basic dynamic programming formulation. 

 See 
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-
1457.html 

 At study group, give an example of RNA 
secondary structure, how the recurrence is 
derived for its computation, and how the 
recurrence is evaluated. 
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http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html


Group 3 (random assignment at lecture) 

 Gene prediction by spliced alignment: 
 Application/extension of heaviest path on a DAG. 

 J & P pages 203-207. 

 (copies shared at lecture) 

 At study group, explain the idea visually and explain 
how the recurrences are derived. What is the running 
time of the algorithm? 
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