
A Novel Min-Cost Flow Method for Estimating Transcript
Expression with RNA-Seq

Alexandru I. Tomescu1, Anna Kuosmanen1, Romeo Rizzi2, and Veli Mäkinen1
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Abstract. Through transcription and alternative splicing, a gene can be transcribed into different
RNA sequences (an isoform), depending on the individual and on the tissue the cell is in. Recent RNA-
Seq technology allows for new high-throughput ways for isoform identification and quantification based
on short reads, and various methods have been put forward for this non-trivial problem.
In this paper we propose a novel radically different method based on minimum-cost network flows.
This has a two-fold advantage: on the one hand, it translates the problem as an established one in the
field of network flows, which can be solved in polynomial time, with different existing solvers; on the
other hand, it is general enough to encompass many of the previous proposals under the least sum of
squares model. Our method works as follows: in order to find the transcripts which best explain, under
a given fitness model, a splicing graph resulting from an RNA-Seq experiment, we find a min-cost flow
in an offset flow network, under an equivalent cost model. Under very weak assumptions on the fitness
model, the optimal flow can be computed in polynomial time. Parsimoniously splitting the flow back
into few path transcripts can be done with any of the heuristics and approximations available from the
theory of network flows. In the present implementation, we choose the simple strategy of removing the
heaviest path. Experimental results on prediction accuracy show that our method is very competitive
as it provides better precision and recall than popular tools such as Cufflinks and IsoLasso.

Keywords: Isoform Identification, Isoform Quantification, RNA-Seq, Graph Optimization Problem,
Network Flow, Min-Cost Flow

1 Introduction

Recent RNA-Seq technology [13, 15] opened a new high-throughput, low cost way for isoform iden-
tification and quantification, leading to new understanding of gene regulation in development and
disease (e.g., [18]). In an RNA-Seq experiment a set of short reads is produced from mRNA tran-
scripts. The difficulty in assembling these short reads into the transcripts from which they were
sampled is non-trivial due to the fact that the transcripts may share exons. As a result, all methods
for solving this problem rely on an explicit or implicit graph model. The nodes represent individual
reads (overlap graph [21]), or contiguous stretches of DNA uninterrupted by spliced reads (splicing
graph [6, 11, 9], connectivity graph [3, 10, 4]), while the edges are derived from overlaps or from
spliced read alignments. Each node and edge has an associated observed coverage, and the problem
of isoform identification and quantification is seen as separating the coverage of the graph into indi-
vidual path components, under different models. Furthermore, this problem was also coined under
the broad name ‘Multiassembly Problem’ [26], a hint that it can arise not only with RNA-Seq data,
but also in other biological settings, such as assembling metagenomics reads [14].

Except for Cufflinks [21], all tools mentioned above rely on some optimization engine, whose
solving is generally difficult. IsoInfer/IsoLasso [3, 10], SLIDE [9], Scripture [4], and CLIIQ [11] ex-
haustively enumerate all possible candidate paths. For efficiency reasons, each has some restrictions
on what a valid candidate path might be, and for each candidate isoform, they define a fitness func-
tion. IsoInfer/IsoLasso and SLIDE use a least sum of squares fitness function; IsoLasso and SLIDE



both add different shrinkage terms to the fitness function in order to favor isoforms with fewer
transcripts, which is computed with a modified LASSO algorithm, or a quadratic program; CLIIQ
uses a least sum of absolute differences fitness function, solved by a linear integer program. Cuf-
flinks avoids the problem of exhaustively enumerating all possible paths by returning a minimum
path cover, and then assigning expression levels to each path in this cover based on a statistical
model. Incidentally, note that computing a minimum path cover (in an acyclic digraph) is done by
computing a maximum matching, which can be easily reduced to a flow problem. However, such
reduction solves a different (implicitly defined) optimization problem than can be considered as a
consensus model in the literature [3, 10, 9, 4, 11], mostly because the fitting of expression levels is
separated in the process.

Our contribution. In this paper we propose a radically different and very general method relying
on the established field of minimum-cost network flow problems [1]. This will not only provide a
simple method and a fast polynomial time algorithm for solving it (as opposed to exhaustively
enumerating all possible candidate paths, and then solving a quadratic/integer linear program for
evaluating the fitness of each candidate isoform), but it can also lean on the ample literature on
splitting a (min-cost) flow into paths, e.g., [24, 5, 7, 17].

As in the case of the other tools, our method assumes that a splicing graph has been built for
each gene. Each node of the graph corresponds to a stretch of DNA uninterrupted by any spliced
read alignment; such sequences are called segments in [10], but for simplicity we just call them
exons. Each edge of the graph corresponds to two exons consecutive in some transcript, that is,
to some spliced read whose prefix aligns to the suffix of one exon, and whose suffix aligns to the
prefix of another exon. Observe that such a graph can be seen as a directed acyclic graph (DAG,
for short), the direction of the edges being according to the absolute position of the exons in the
genome. For each exon v we can deduct its coverage cov(v) as the total number of reads aligned to
the exon divided by the exon length, and the coverage cov(u, v) of an edge (u, v) as the total number
of reads split aligned to that junction between exons u and v. An mRNA transcript candidate thus
becomes a path from a source node s ∈ V to a sink node t ∈ V .1

In order to define a fitness function in the broadest possible terms, let us assume that for each
node v and edge (u, v) of the graph we have convex cost functions fv, fuv : R → R modeling how
close that node and edge must be explained by the candidate isoform. Then, we can state the
problem of isoform identification and quantification as following problem.

Problem 1 (UTEC). Given a splicing DAG G = (V,E) with coverage values cov(v) and cov(u, v),
and cost functions fv(·) and fuv(·), for all v ∈ V and (u, v) ∈ E, the Unannotated Transcript
Expression Cover problem is to find a tuple P of paths from the sources of G to the sinks of G,
with an estimated expression level e(P ) for each path P ∈ P, which minimize

sum err(G,P) :=
∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P
e(P )

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P )

∣∣∣∣∣∣
 .

For example, if for all nodes v and edges (u, v), fv(x) = x, fuv(x) = x, then we have a least sum
of absolute differences model as in CLIIQ. If fu(x) = x2, fuv(x) = x2, then we have a least sum

1 The requirement that the transcripts start in a source node and end in a sink node is no restriction, as we can add
dummy source/sink nodes as in-/out-neighbors to the nodes where we have indication that some transcript might
start/end. Indeed, our splicing graph creation tool uses splicing alignments and coverage information to discover
such start/end nodes and accordingly indicates them for our tool.
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of squares model as in IsoInfer, IsoLasso and SLIDE. Observe that many of the other biological
assumptions of the other tools can be incorporated in this model. Motivated by also by [23], in this
paper we focus on two convex cost function, f1 and f2, of the form

f1
v (x) =

x

cov(v)
, f1

uv(x) =
x

cov(u, v)
, f2

v (x) = x2, f2
uv(x) = x2. (1)

We will show that Problem UTEC can be solved in polynomial time, by a reduction to a min-
cost flow problem with convex cost functions. We will argue that finding the optimal tuple of paths
explaining the graph is equivalent to finding the optimal flow in an offset flow network. Moreover,
any splitting of this optimal flow into paths attains the minimum of Problem UTEC. In the same
way as some of the other tools try to limit the number of paths explaining a splicing graph by a
LASSO approach, we can rely on established methods for splitting any flow into few paths (e.g., [24,
5, 7, 17]). In this paper, we employ only the simple linear-time heuristic of repeatedly removing the
heaviest path, see e.g., [5].

We give experimental results to study how well the predictions match the ground-truth on
simulated data, and how well it fares on real-data, compared to Cufflinks [21] and IsoLasso [10];
our method is very competitive, providing better precision and recall.

2 Method

We begin by recalling the basic notions of flow and of a min-cost flow problem, and refer to
the excellent monograph [1] for further details. A flow network (or simply network) is a tuple
N = (G, b, q), where G = (V,E) is a directed graph, b is a function assigning a capacity buv ∈ N
to every arc (u, v) ∈ E, and q is a function assigning an exogenous flow qv ∈ N to every node
v ∈ V , such that

∑
v∈V qv = 0. We say that a function x assigning to every arc (u, v) ∈ E a number

xuv ∈ N is a flow over the network N , if the following two conditions are satisfied:

1. 0 6 xuv 6 buv, for every (u, v) ∈ E,

2.
∑
u∈V

xvu −
∑
u∈V

xuv = qv, for every v ∈ V ,

In a min-cost flow problem, one is additionally given flow cost functions cuv(·), for every arc (u, v) ∈
E, and is required to find a flow which minimizes:∑

(u,v)∈E

cuv(xuv).

It is well-known that, under the assumption that all the flow cost functions cuv(·) are convex, a
min-cost flow can be found in polynomial time [12] (see also [25] for the real-valued flow case).

2.1 The Reduction to a Min-Cost Flow Problem

We will model Problem UTEC as a min-cost flow problem, thus showing that it can be solved in
polynomial time. First, we argue that it can be transformed into the following equivalent problem,
where the input exon chaining graph has measured coverages only on arcs.

Problem 2 (UTEJC). Given a splicing DAG G = (V,E) with coverage values cov(u, v), and cost
functions fuv(·), for all (u, v) ∈ E, the Unannotated Transcript Expression Junction Cover problem
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is to find a tuple P of paths from the sources of G to the sinks of G with an estimated expression
level e(P ) for each path P ∈ P, which minimize

∑
(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P )

∣∣∣∣∣∣
 .

Given an input G = (V,E) for Problem UTEC, we construct an input for Problem UTEJC by replac-
ing every node v ∈ V with two new nodes, vin and vout, and an arc (vin, vout), with cov(vin, vout) =
cov(v), and fvinvout(x) = fv(x). Furthermore, for every arc (u, v) ∈ E, we replace arc (u, v) with
the arc (uout, vin), with the same coverage as (u, v). It is immediate that optimal solutions for G
to Problem UTEC are in bijection with the optimal solutions for the transformed graph to Prob-
lem UTEJC.

To solve Problem UTEJC, we build an auxiliary offset network with convex costs of the form
cuv(x) = fuv(x). An optimal flow for this network will model the offsets (positive or negative)
between the measured coverages of the exon chaining graph and their actual expression levels in an
optimal solution. Then, we argue that a min-cost flow on this network naturally induces a solution
for the UTEJC problem.

Onwards, we denote by N+
G (v) the set of out-neighbors of v in the directed graph G, that is,

the set {w : (v, w) ∈ E(G)}. Similarly, we denote by N−G (v) the set of in-neighbors of v in the
directed graph G, that is, the set {u : (u, v) ∈ E(G)}. When G is clear from the context, we will
skip it as subscript.

Given a splicing DAG G with coverage values cov(u, v), and cost functions fuv, for all (u, v) ∈ E,
we construct the offset network N∗ = (G∗, b, q) with cost function c, as follows (see Fig. 1 for an
example):

1. we add to G∗ all nodes and edges of G, together with
(a) a new source s0 and a new sink t0 with qs0 := qt0 := 0,
(b) arcs (s0, s), for every source s of G, and arcs (t, t0) for every sink t of G, each with infinite

capacity and null cost function,
(c) arc (t0, s0) with infinite capacity and null cost function,
(d) nodes s∗ and t∗, with initial exogenous flow qs∗ := qt∗ := 0;

2. for every arc (u, v) ∈ E(G),
(a) buv :=∞, cuv(x) := fuv(x),
(b) we add the reverse arc (v, u) to G∗ with bvu := cov(u, v), cvu(x) := fuv(x);

3. for every v ∈ V (G),
(a) its exogenous flow qv is zero,
(b) if

∑
u∈N+(v) cov(v, u)−

∑
u∈N−(v) cov(u, v) > 0, we add arc (v, t∗) to G∗ where:

i. bvt∗ :=
∑

u∈N+(v) cov(v, u)−
∑

u∈N−(v) cov(u, v), cvt∗(x) := 0,

ii. we update qt∗ := qt∗ +
∑

u∈N−(v) cov(u, v)−
∑

u∈N+(v) cov(v, u);

(c) if
∑

u∈N+(v) cov(v, u)−
∑

u∈N−(v) cov(u, v) < 0, we add arc (s∗, v) to G∗ where:

i. bs∗v :=
∑

u∈N−(v) cov(v, u)−
∑

u∈N+(v) cov(u, v), cs∗v(x) := 0,

ii. we update qs∗ := qs∗ +
∑

u∈N−(v) cov(v, u)−
∑

u∈N+(v) cov(u, v).

The next lemma shows that there exists a min-cost flow x∗ on N∗.

Lemma 1. Given a digraph G with arc coverages cov(·, ·), the offset network N∗ = (G∗, b, q)
constructed as above is a flow network, i.e.,

∑
v∈V (G∗) qv = 0.

4



s t

a

b

c

d

4

2

6

2

2

2

4

2

(a) An input G to Problem UTEJC
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(b) The offset network G∗; arcs are labeled with their ca-
pacity, unlabeled arcs having infinite capacity

Fig. 1. Example of an offset network.

Proof. Since qv = 0, for all v ∈ V (G∗) \ {s∗, t∗}, it remains to show that qs∗ + qt∗ = 0. Indeed,

qs∗ + qt∗ =
∑

v∈V (G)

 ∑
u∈N−

G (v)

cov(u, v)−
∑

u∈N+
G (v)

cov(v, u)


=

∑
v∈V (G)

∑
u∈N−

G (v)

cov(u, v)−
∑

v∈V (G)

∑
u∈N+

G (v)

cov(v, u)

=
∑

(u,v)∈E(G)

cov(u, v)−
∑

(v,u)∈E(G)

cov(v, u) = 0

ut

From such a flow x∗, we construct the function x on the edges G as follows. First, observe that for
every arc (u, v) ∈ E(G), at most one of x∗uv or x∗vu is nonnull. Indeed, if this were not the case, then a
flow y∗ which coincides with x∗, except for y∗uv := x∗uv−min(x∗uv, x

∗
vu) and y∗vu := x∗vu−min(x∗uv, x

∗
vu),

is also a flow on N∗ and has a strictly smaller cost than x∗, contradicting the fact that x∗ is of
minimum cost. Then, for each arc (u, v) ∈ E(G) we set:

xuv := cov(u, v) + x∗uv − x∗vu.

2.2 From a Flow to a Set of Paths

Theorem 1 below will argue that the above defined function x is a flow on G (points (1), (2)), whose
arcs we consider to have unbounded capacities and whose nodes, apart from the sources and sinks,
have exogenous flow 0. It is a well-known result from classical network flow theory that such a flow
can be decomposed into paths, that is, there exist paths P1, . . . , Pt from the sources of G to the
sinks of G, having weights w1, . . . , wt, respectively, such that, for every (u, v) ∈ E(G) we have

xuv =
∑

i : (u,v) belongs to Pi

wi.

Moreover, a decomposition of x into at most |E(G)| paths always exists and can be found in time
|V (G)| · |E(G)|. Theorem 1 also shows that the paths of any decomposition of x are an optimal
solution for G to Problem UTEJC (point (3)). Its proof is available in Appendix A.
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Theorem 1. Given an optimal flow x∗ on G∗, the function x on G just constructed satisfies the
properties, where S denotes the set of sources of G, and T denotes the set of sinks of G:

(1) for all v ∈ V (G) \ {s, t},
∑

u∈N−
G (v) xuv =

∑
u∈N+

G (v) xvu;

(2)
∑

s∈S
∑

v∈N+
G (s) xsv =

∑
t∈T
∑

u∈N−
G (t) xut

(3) any decomposition of x into paths attains the minimum of the objective function of Prob-
lem UTEJC, on input G.

In our implementation we use the min-cost flow engine available in the LEMON Graph Library [8].
If no engine for arbitrary convex cost functions is available, or, more generally, if the cost functions
themselves happen not to be convex, one can approximate any cost function with piecewise con-
stant or convex cost functions: e.g., one can replace an arc (u, v) of capacity buv, with |buv| arcs
of capacity 1, such that first arc has cost f(1), and the ith arc, i > 1, has cost f(i) − f(i − 1)
(this reduction is only pseudo-polynomial but reveals quite effective in practice), see [1] for further
details.

2.3 Decomposing the Min-Cost Flow into Few Paths

As already shown by the other tools, we are generally interested in parsimoniously explaining an
RNA-seq experiment, that is, in finding, among the optimal solutions to Problem UTEC, one with
a low number of paths. At a closer analysis it can be seen that any flow on a graph G = (V,E) can
be decomposed into at most |E|− |V |+ 2 paths [24]. However, decomposing a flow into a minimum
number of paths is an NP-hard problem in the strong sense, even when restricted to DAGs [24, 5].
To overcome this limitation, various heuristics and approximations have been put forth, see, e.g.,
[24, 5, 7, 17] and the references therein. The advantage of our method is that once we have obtained
the optimal flow, we can apply any of these methods to split the flow into few paths. For simplicity,
in this paper we employ the policy of removing the heaviest path, see, e.g., [5]: until the network
has null flow, we select a path from the sources to the sinks whose minimum flow on its edges is
maximum, report it as transcript, and remove it from the flow network.

3 Experiments

We call our tool Traph (T ranscripts in Graphs). We compared Traph to the most used isoform pre-
diction tool Cufflinks [21] and with IsoLasso [10]. We also tried to include SLIDE [9] and CLIIQ [11],
but we could not make the former work reliably, and for the latter the publicly available version
was not yet available. Full experiment data is available at [20].

3.1 Matching criteria

In order to match the predicted transcripts with the true transcripts, we take into account the DNA
sequences but also the expression levels. For each gene, we construct a bipartite graph with the true
transcripts T = (T1, T2, . . . ) as nodes in one set of the bipartition, and the predicted transcripts
P = (P1, P2, . . . ) as nodes in the other set of the bipartition. Empty sequences with 0 expression
level were added so that both sets of the bipartition had an equal number of nodes.

To define the costs of the edges of this bipartite graph, let us introduce (cf. Normalized Com-
pression Distance [2]) the binary encoding of a true transcript T and its expression level e(T ) with
respect to a predicted transcript P with expression level e(P )

code(T | P, j) = γ(j)γ(d+ 1)editsencoded(T, P )γ(f(e(T )− e(P ))), (2)
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where γ(x) = 0|bin(x)|−11bin(x), bin(x) being the binary encoding of x > 0, j is the index of P
in the list of predicted transcripts, d is the unit cost (Levenshtein) edit distance of T and P ,
editsencoded(T, P ) lists the edits and gaps between edits using 2-bit fixed code for edit type, 2-bit
fixed code for substituted/inserted symbol, and γ(x+ 1) for gap (run of identities) of length x, and
f(x) is a bijection between {0, 1,−1, 2,−2, . . .} and {1, 2, 3, 4, 5, . . .} defined as f(x) = 2x for x > 0
and f(x) = 2(−x) + 1 otherwise.

Then, the edge cost between nodes Ti ∈ T and Pj ∈ P is defined as |code(Ti | Pj , j)|−|γ(j)|. The
closer to zero this number is, the better the match between true transcript Ti, with true expression
level e(Ti) and predicted transcript Pj with predicted expression level e(Pj). The minimum weight
perfect matching was then computed; this gives a one-to-one mapping between true and predicted
transcripts, therefore true transcripts can be ordered in the same order as they match predicted
transcripts and code for the index, γ(j), is no longer required. Let edit code length for an edge
between Ti and Pj be |γ(d+1)editsencoded(Ti, Pj)|, where d is the edit distance. Let bitscore be edit
code length divided by |γ (|Ti|+ 1) editsencoded(Ti, ε)|; bitscore is asymmetric, and possibly greater
than 1 if ε would be a better match to Ti than to Pj , but minimum weight perfect matching chose
otherwise for global minimality. Each matched node pair with relative expression level difference
and (edit) bitscore under some given thresholds define a true positive event (TP). The other kind
of nodes define false positive (FP) and false negative (FN) events depending on which side of the
bipartite graph they reside. Prediction efficiency based on precision, recall and F-measure is also
employed in [10, 11].

3.2 Simulated human data

As in the case of the other tools, we deem that validating against simulated data is a prerequisite,
since, in general, on real data, we do not have available ground-truth. We designed the following
validation experiment, closely following the approaches in [11, 10]. We chose a set of genes at
random, and looked up the corresponding annotated transcripts from the Ensembl database. Out
of these genes, we selected only those having between 2 and 5 transcripts. In all, we had 29 genes. For
each transcript, we simulated reads with the RNASeqReadSimulator [16]. This simulator chooses an
expression level at random from lognormal distribution with mean −4 and variance 1. For each gene,
it simulated 300 000 reads as follows: a transcript was chosen randomly using its expression level as
distribution weight, while the position of the read within the transcript was chosen uniformly. As
argued in the case of IsoLasso [10], various error models can be incorporated in these steps, but we
chose to compare the performance of the methods in neutral conditions. We mapped the reads with
TopHat [22]: these read mapping results were given as input to the tested prediction software, and
to a Python program which we wrote to construct the splicing graphs needed for Traph. Cufflinks
and IsoLasso were ran with the default parameters. Since our tool is not yet employing existing
gene annotation information, we ran Cufflinks and IsoLasso without annotation. We use RPKM
values as expression levels.

We devised two experiments: one in which the reads simulated from each gene were fed indepen-
dently to TopHat for alignment, and these independent alignment results were fed to each tool (we
call it single genes); and second more realistic one in which all the reads simulated from all the
genes were combined into one file which was given to TopHat for alignment, and these combined
alignments results were fed to the tools (we call it batch mode).

Table 1 and Fig. 2 show selected validation results. The measures reported are precision =
TP/(TP+FP), recall = TP/(TP+FN), and F-measure = 2∗precision∗recall/(precision+recall). We
selected to depict two relative expression level differences, 0.1 and 0.9, illustrating opposite ex-
pression levels matching criteria. In the first, we require that the predicted expression levels be at
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most 10% different from true ones, and in the second they can be at most 90% different from the
true ones. Traph with fitting function f1 generally performs best, its lead being even higher at big
expression level difference. Very interestingly, in the batch mode experiment, very similar to how
RNA-Seq data is acquired, Traph is an order of magnitude better than its two competitors, the
fitness function f2 giving better results than f1 at small expression level difference.
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Fig. 2. Performance of IsoLasso (black circle), Cufflinks (blue square), Traph with cost function f1(x) = x/cov (red
triangle), and with cost function f2(x) = x2 (green cross) on simulated data. Figs. 2(a) and 2(b) depict results with
perfect mapping, in the single genes scenario; Figs. 2(c) and 2(d) depict results with TopHat mappings, also in the
single genes scenario. Figs. 2(e) and 2(f) depict results with TopHat mappings in the batch mode scenario.

3.3 Real human data

We used the same real dataset from the IsoLasso paper [10], Caltech RNA-Seq track from the
ENCODE project [19], NCBI SRA accession number SRR065504, consisting of 75bp paired-end
reads. Out of these reads, we picked the 2,406,339 which mapped to human chromosome 2. We
match transcripts predicted by one software to the transcripts predicted by the other two, employing
the same minimum weight perfect matching method presented in Sec. 3.1, this time without taking
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Table 1. Performance of the three tools under scrutiny, for TopHat mappings and in the single genes scenario;
precision, recall and F-measure are computed for (relative expression level difference, bitscore) ∈ {(0.1,0.2),(0.9,0.2)}.

Precision Recall F-measure
Avg. run time/gene

(0.1, 0.2) (0.9, 0.2) (0.1, 0.2) (0.9, 0.2) (0.1, 0.2) (0.9, 0.2)

IsoLasso 0.0554 0.3310 0.0633 0.3240 0.0530 0.2769 25 s

Cufflinks 0.0966 0.4195 0.0880 0.3993 0.0915 0.3995 40 s

Traph f1(x) = x/cov 0.1000 0.4556 0.1013 0.4786 0.0961 0.4471 40 s

Traph f2(x) = x2 0.0933 0.3894 0.0866 0.4440 0.0893 0.3955 72 s

into account expression levels. A true positive is a match selected by the perfect matching with
bitscore under 0.2.

In all, we had 721 genes on which the three tools made some prediction. We should note that
these 721 genes have 6466 annotated transcripts; Traph (with fitness function f2) predicted in total
4156 transcripts for these genes, Cufflinks 1908, and IsoLasso 1472. As in [10], we depict in Fig. 3(a)
a more detailed Venn diagram of the intersections between the sets of transcripts reported by the
three tools.

We also include a histogram of the lengths of the annotated transcripts of these genes, and
of the ones reported by Traph, IsoLasso, and Cufflinks. Here we round all transcript lengths to
the nearest multiple of 1000. We see that the distribution in the case of Traph is similar to the
distribution in the case of the annotated transcripts; the distributions for Cufflinks and IsoLasso
are similar, but not very close to the annotation.

Traph

3995

IsoLasso

874

Cufflinks

1290

29

486

49

83

(a) Venn diagram of the inter-
sections of the sets of reported
transcripts
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(b) Histogram of the distribution of transcript lengths of the annotation, and re-
ported by Traph, Cufflinks and IsoLasso

Fig. 3. Results on real human data from ENCODE project [19], NCBI SRA accession number SRR065504.

3.4 Running times

On the real dataset, Cufflinks finished in 20 min, IsoLasso in 2 min, and Traph in 30 min. We should
however stress that for solving the min-cost flow problem and for identifying the transcripts, Traph
with cost function f2 uses in fact 6 min, the rest of the time being spent by our graph creation
tool, which is written in Python. We could not make such a detailed analysis in the case of the
other two tools. The running time of our Python script is as well included in the last column of
Table 1, were we listed the average running time per gene with simulated reads of each tool.
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4 Discussion

All tools for isoform identification and quantification use an explicit or implicit graph model. Re-
sorting to such a representation, the main contribution of this paper consists in a novel, radi-
cally different method based on minimum-cost flows, an established problem, for which there exist
polynomial-time algorithms and solvers. Our framework is general enough to encompass many of
the previous proposals under the least sum of squares model. We implemented this method into
our tool Traph, and showed that it gives better precision and recall on simulated data, especially
in the realistic setting when all simulated reads are collected into one file, which is fed to the tools.
We also included results on real data, showing that the distribution of the lengths of our predicted
transcripts is closer to the one of the lengths of the annotated transcripts.

Our method is general enough to easily accommodate other biological assumptions, which we
leave for future work. Among these, we plan to integrate existing gene annotation into a more
refined construction of the splicing graph and into the fitness model, or to correct sequencing bias.
In order to evaluate the tools against real ground-truth data, we have started a process of acquiring
sequencing reads (PacBio) of the true isoforms of a gene.

Acknowledgements. We wish to thank Antti Honkela for many insightful discussions on transcript
prediction.
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A A proof of Theorem 1

Proof. (1): Let v ∈ V (G); by the definition of x, we can write

∑
u∈N−

G (v)

xuv −
∑

u∈N+
G (v)

xvu =
∑

N−
G (v)

(cov(u, v) + x∗uv − x∗vu)−
∑

u∈N+
G (v)

(cov(v, u) + x∗vu − x∗uv)

=
∑

u∈N−
G (v)

cov(u, v)−
∑

N+
G (v,u

cov(v, u) +

+
∑

u∈N−
G (v)

x∗uv +
∑

u∈N+
G (v)

x∗uv −
∑

u∈N−
G (v)

x∗vu −
∑

u∈N+
G (v)

x∗vu

=
∑

u∈N−
G (v)

cov(u, v)−
∑

u∈N+
G (v)

cov(v, u) +
∑

u∈N−
G (v)∪N+

G (v)

x∗uv −
∑

u∈N−
G (v)∪N+

G (v)

x∗vu.

Observe that for all edges entering t∗ (exiting s∗), their flow equals their capacity, as we have
adjusted the exogenous flow of t∗ (of s∗) at point 3.(b)ii. (and 3.(c)ii.) in the construction of G∗.
We distinguish three cases.

If
∑

u∈N−
G (v)∪N+

G (v) x
∗
uv−

∑
u∈N−

G (v)∪N+
G (v) x

∗
vu > 0, then

∑
u∈N−

G (v)∪N+
G (v) x

∗
uv−

∑
u∈N−

G (v)∪N+
G (v) x

∗
vu =

x∗vt∗ . Since the flow x∗ uses the arc (v, t∗) with its maximum capacity, we have that x∗vt∗ = bvt∗ =∑
u∈N+

G (v) cov(v, u) −
∑

u∈N−
G (v) cov(u, v), which shows that

∑
u∈N−

G (v) xuv −
∑

u∈N+
G (v) xvu = 0,

proving the claim. If
∑

u∈N−
G (v)∪N+

G (v) x
∗
uv −

∑
u∈N−

G (v)∪N+
G (v) x

∗
vu < 0, then

∑
u∈N−

G (v)∪N+
G (v) x

∗
uv −∑

u∈N−
G (v)∪N+

G (v) x
∗
vu = −x∗s∗v. Since the flow x∗ uses the arc (s∗, v) with its maximum capacity, we

have that x∗s∗v = bs∗v =
∑

u∈N−
G (v) cov(v, u)−

∑
u∈N+

G (v) cov(u, v), which again proves the claim. If∑
u∈N−

G (v)∪N+
G (v) x

∗
uv −

∑
u∈N−

G (v)∪N+
G (v) x

∗
vu = 0, then, by construction there is no edge between v

and t∗ or s∗, implying, again by construction, that
∑

u∈N−
G (v) cov(u, v) =

∑
u∈N+

G (v) cov(v, u), from

which the claim follows.

(2): From the definition of x, we have

∑
s∈S

∑
v∈N+

G (s)

xsv =
∑
s∈S

 ∑
v∈N+

G (s)

(cov(s, v) + x∗sv − x∗vs)

 (3)

=
∑
s∈S

 ∑
v∈N+

G (s)

cov(s, v) +
∑

v∈N+
G (s)

x∗sv −
∑

v∈N+
G (s)

x∗vs

 (4)

By construction, since qs = 0 for all s ∈ S, we have x∗st∗ +
∑

v∈N+
G (s) x

∗
sv =

∑
v∈N+

G (s) x
∗
vs + x∗s0s.

Therefore,
∑

v∈N+
G (s) x

∗
sv −

∑
v∈N+

G (s) x
∗
vs = x∗s0s − x

∗
st∗ = x∗s0s − bst∗ = x∗s0s −

∑
v∈N+

G (s) cov(s, v).

Plugging this into (4), we obtain

∑
s∈S

∑
v∈N+

G (s)

xsv =
∑
s∈S

x∗s0s = x∗t0s0 . (5)
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Similarly,

∑
t∈T

∑
u∈N−

G (t)

xut =
∑
t∈T

 ∑
u∈N−

G (t)

(cov(u, t) + x∗ut − x∗tu)

 (6)

=
∑
t∈T

 ∑
u∈N−

G (t)

cov(u, t) +
∑

u∈N−
G (t)

x∗ut −
∑

u∈N−
G (t)

x∗tu

 (7)

By construction, since qt = 0 for all t ∈ T , we have x∗s∗t +
∑

u∈N−
G (t) x

∗
ut = x∗tt0 −

∑
u∈N−

G (t) x
∗
tu.

Therefore,
∑

u∈N−
G (t) x

∗
ut −

∑
u∈N−

G (t) x
∗
tu = x∗tt0 − x∗s∗t = x∗tt0 − bs∗t = x∗tt0 −

∑
u∈N−

G (t) cov(u, t).

Plugging this into (7), we prove the claim, since by (5) we get∑
t∈T

∑
u∈N−

G (t)

xut =
∑
t∈T

x∗tt0 = x∗t0s0 =
∑
s∈S

∑
v∈N+

G (s)

xsv. (8)

(3): Since any tuple of paths P = (P1, P2, . . . , Pk) from sources of G to sinks of G, induces a
flow on G, where the exogenous flow of all nodes which are not sources nor sinks is zero, and any
such flow can be split into paths from sources to sinks, the minimum value of

∑
(u,v)∈E(G)

fuv

∣∣∣∣∣∣cov(u, v)−
∑

Pi∈P: (u,v)∈Pi

ei

∣∣∣∣∣∣
 , (9)

over all k, all k-tuples of paths P = (P1, P2, . . . , Pk) from a source of G to a sink of G, and over
all expression levels ei for each Pi, is equal to miny is a flow on G

∑
(u,v)∈E(G) fuv (|cov(u, v)− yuv|).

Since any flow on G induces a flow on G∗, and vice versa, the above is equal to

min
z is a flow on G∗

∑
(u,v)∈E(G)

fuv (|zuv − zvu|) .

Since
x∗ = argmin

z is a flow on G∗

∑
(u,v)∈E(G)

fuv(zuv) + fuv(zvu), (10)

and from minimality, for all arcs (u, v) ∈ E(G), at most one of zuv or zvu is non null, we have that
x∗ also attains the minimum in (9), proving the theorem. ut
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