582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

19.9.2013

Slides by Leena Salmela, adapted from slides by Veli Mäkinen

Sequence similarity

- Genome rearrangement problem assumed we know for each gene in species A its counterpart in species B (if exists).
 - Orthologous genes: same ancestor in evolution
 - Paralogous genes: gene duplication
 - Homolog = Ortholog or paralog
- Often sequence similarity is the only way to predict whether two genes are homologs
 - Very unlikely that same (long) sequences have evolved independently from different ancestors
 - ... except horizontal gene transfer

Sequence similarity vs. distance

- Let A and B be two strings (sequences) from alphabet Σ
- Many different ways to define similarity or distance of A and B
- Recall Hamming distance d_H(A, B)
 - Only defined when |A| = |B|.
- What is the simplest measure to extend Hamming distance to different length strings?
 - For many purposes it is useful if the distance is a *metric*

Edit distance

- The most studied distance function extending Hamming distance is unit cost edit distance or Levenshtein distance.
- d_L(A, B) is the minimum amount of single symbol insertions, deletions and substitutions required to convert A into B.
- ▶ For example, when A = "tukholma" and B = "stockholm" we have d_L(A, B) = 4:
 - \blacktriangleright insert s, substitute u \rightarrow o, insert c, delete a
 - \blacktriangleright ... or insert s, insert o, substitute u \rightarrow c, delete a
 - ... or is there a better sequence of edits?
 - -tu-kholma stockholm-

Dynamic Programming

- Some problems can be broken into smaller subproblems so that the solution to the problem can be constructed from the solutions of the subproblems.
- > This often leads to several instances of the same subproblem
- Dynamic programming is a technique to organize the computation and save the solutions of the subproblems so that they only need to be solved once.
- ► We will use dynamic programming to compute edit distance.

Example: Computing Fibonacci numbers

Remember Fibonacci numbers:

$$F(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2\\ F(n-2) + F(n-1) & \text{otherwise} \end{cases}$$

 The recursion to compute *F(n)* contains many identical subproblems:

We can avoid solving the same subproblem several times by saving the results in an array:

Example: Computing Fibonacci numbers

Remember Fibonacci numbers:

$$F(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = \\ F(n-2) + F(n-1) & \text{otherwise} \end{cases}$$

 The recursion to compute
 F(n) contains many identical subproblems:

F(*n*):

- 1: if n = 1 or n = 2 then
- 2: return 1
- 3: else

4: return
$$F(n-2) + F(n-1)$$

We can avoid solving the same subproblem several times by saving the results in an array:

2

$$F(n):$$
1: $f_1 \leftarrow 1$
2: $f_2 \leftarrow 1$
3: for $i \leftarrow 3$ to n do
4: $f_i \leftarrow f_{i-2} + f_{i-1}$
5: return f_n

Example: Shortest path in a DAG

Edit distance

- Consider an optimal listing of edits to convert the prefix a₁a₂...a_i of A into prefix b₁b₂...b_j of B
- Let the corresponding edit distance be $d_L(a_1a_2...a_i, b_1b_2...b_j)$
- If $a_i = b_j$, we know that $d_L(a_1a_2...a_i, b_1b_2...b_j) = d_L(a_1a_2...a_{i-1}, b_1b_2...b_{j-1})$
- Otherwise either a_i is substituted by b_j, or a_i is deleted, or b_j is inserted in the optimal list of edits
- Hence we have

$$d_{L}(a_{1}a_{2}...a_{i}, b_{1}b_{2}...b_{j}) = \min \begin{cases} d_{L}(a_{1}a_{2}...a_{i-1}, b_{1}b_{2}...b_{j-1}) + (\text{if } a_{i} = b_{j} \text{ then } 0 \text{ else } 1) \\ d_{L}(a_{1}a_{2}...a_{i-1}, b_{1}b_{2}...b_{j}) + 1 \\ d_{L}(a_{1}a_{2}...a_{i}, b_{1}b_{2}...b_{j-1}) + 1 \end{cases}$$

Edit distance matrix D[i, j]

- Let D[i, j] denote $d_L(a_1 a_2 \dots a_i, b_1 b_2 \dots b_j)$.
- Obviously D[0, j] = j and D[i, 0] = i because the other prefix is of lentgh 0
- Induction from previous slide gives:

$$D[i,j] = \min \begin{cases} D[i-1,j-1] + (\text{if } a_i = b_j \text{ then } 0 \text{ else } 1) \\ D[i-1,j] + 1 \\ D[i,j-1] + 1 \end{cases}$$

- Matrix D can be computed in many evaluation orders:
 - ▶ D[i 1, j 1], D[i 1, j], and D[i, j 1] must be available when computing D[i, j]
 - E.g. compute D row-by-row, column-by-column...
- Running time to compute D[m, n] is O(mn)

Edit distance: example

j

		s	t	0	с	k	h	0	Ι	m
	0 <	-1,	2	3	4	5	6	7	8	9
t	1	1	1*	-2	3	4	5	6	7	8
u	2	2	2	2∢	-3	4	5	6	7	8
k	3	3	3	3	3	3,	4	5	6	7
h	4	4	4	4	4	4	3,	4	5	6
0	5	5	5	4	5	5	4	3,	4	5
Ι	6	6	6	5	5	6	5	4	3,	4
m	7	7	7	6	6	6	6	5	4	3
а	8	8	8	7	7	7	7	6	5	4

i

Edit distance matrix as a DAG

j

Finding optimal alignments

One alignment:

- Store pointer to each cell telling from which cell the minimum was obtained.
- Follow the pointers from (m, n) to (0, 0).
- Reverse the list.

All alignments:

- ► Backtrack from (m, n) to (0,0) by checking at each cell (i, j) on the path whether the value D[i, j] could have been obtained from cell (i, j − 1), (i − 1, j − 1), or (i − 1, j).
- Explore all directions.
 - All three directions possible.
 - Exponential number of optimal paths in the worst case.

Edit distance: example

i

j

		s	t	0	с	k	h	0	Ι	m		t ukholmo
	0 <	-1	2	3	4	5	6	7	8	9		stockholm-
t	1	1	1	- 2	3	4	5	6	7	8		3 L O C K II O I III -
u	2	2	2	2	3	4	5	6	7	8		tu kholmo
k	3	3	3	3	3	3	4	5	6	7		- LU - Kholma
h	4	4	4	4	4	4	3	4	5	6		5 L O C K II O I III -
0	5	5	5	4	5	5	4	3	4	5]	
Ι	6	6	6	5	5	6	5	4	3	4		
m	7	7	7	6	6	6	6	5	4	3		
а	8	8	8	7	7	7	7	6	5	4		

14/35

Searching homologs with edit distance?

- ► Take DNA sequences *A* and *B* of two genes suspected to be homologs.
- Edit distance of A and B can be huge even if A and B are true homologs:
 - One reason is *silent mutations* that alter DNA sequence so that the codons still encode the same amino acids
 - ▶ In principle, A and B can differ in almost every third nucleotide.
- Better to compare protein sequences.
 - Some substitutions are more likely than the others...
 - Lot of tuning needed to use proper weight for operations

Better models \implies 582483 Biological Sequence Analysis (4cr), period III

Edit distance and NGS

- High-throughput next-generation sequencing (NGS) has raised again the issue of using edit distance.
- Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g. cells of a patient.
- The reads are aligned against the reference genome
 - Typically only SNPs and measurement errors need to be taken into account.
 - The occurrence of the reads in the reference genome can be determined by finding the substring of the genome whose edit distance (or Hamming distance) to the reads is minimum.
 - Approximate string matching problem.

NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing, *de novo* sequencing, metagenomics...

Approximate string matching with Hamming distance d_H

- ▶ k-mismatches problem: Search all occurrences O of pattern P[1, m] in text T[1, n] such that P differs in at most k positions from the occurrence substring.
 - ▶ More formally: $j \in O$ is a *k*-mismatch occurrence position of *P* in *T* if $d_H(P, T[j, j + m 1]) \le k$
- Naive algorithm:
 - ► Compare P against each T[j, j + m 1] but skip as soon as k + 1 mismatches are encountered.
 - Expected linear time!

Approximate string matching with edit distance d_L

- k-errors problem is the approximate string matching problem with edit distance:
 - More formally: j ∈ O is a k-errors occurrence with (end)position j of P in T if and only if d_L(P, T[j', j]) ≤ k for some j'.
- Can be solved with the "zero the first row trick":
 - D[0,j] = 0 for all *j*.
 - Otherwise the computation is identical to edit distance computation using matrix *D*.
 - D[i, j] then equals the minimum number of edits to convert P[1, i] into some suffix of T[1, j].
 - If D[m, j] ≤ k then P can be converted to some substring T[j', j] with at most k edit operations.

Approximate string matching: example

NGS atlas and approximate string matching 1/3

- Aligning reads from ChIP-seq and targeted sequences works using basic approximate string matching.
- Tens of millions of reads, speed is an issue.
- ▶ Reference genome can be preprocessed to speed up search.
- Suffix tree like techniques work but...
 - Suffix tree of human genome takes 50-200 GB!
 - ► More space-efficient index structures have been developed (e.g. based on *Burrows-Wheeler transform* that drop the space to ~ 3 GB.

Faster algorithms \implies 58093 String Processing Algorithms (4 cr), period II

NGS atlas and approximate string matching 2/3

- ► Reads from RNA-seq need more advanced alignment:
 - Read can span two exons

ACGATCGATGCTTTATCTATCTACA ACGA<mark>C</mark>CGATGCTTTATCTA<mark>A</mark>CT - CA

NGS atlas and approximate string matching 3/3

- de novo sequenceing and metagenomics are much harder since there is no reference genome.
- Shortest approximate superstring (exercise 2.5)
- How to modify edit distance computations for overlaps?
 - Next week's exercise

Variations: Heaviest path in a DAG

Heaviest paths in sequence alignment

- Consider the DAG of edit distance matrix.
- Turn minimization into maximization.
- Give score $\delta(a_i, b_j)$ for diagonal edges.
- Give score $\delta(a_i, -)$ for vertical edges.
- Give score $\delta(-, b_j)$ for horizontal edges.
- Longest path in the DAG corresponds to the global alignment with highest score
- ▶ Typically $\delta(a_i, b_j) = 1$ if $a_i = b_j$ and otherwise $\delta(a_i, b_j) = -\mu$
- Typically $\delta(a_i, -) = \delta(-, b_j) = -\sigma$

Global alignment DAG and recurrence

$$S[i,j] = \max \begin{cases} S[i-1,j-1] + \delta(a_i, b_j) \\ S[i-1,j] + \delta(a_i, -) \\ S[i,j-1] + \delta(-, b_j) \end{cases}$$

Global alignment: Example

i

$$\delta(a_i, b_j) = 1$$
, if $a_i = b_j$
 $\delta(a_i, b_j) = -1$, otherwise j $\delta(a_i, -) = \delta(-, b_j) = -1$

		А	А	С	Т	Т	А	С	Т	Т	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
С	-1	-1	-2	-1	-2	-3	-4	-5	-6	-7	-8
Α	-2	0	0 <	1	-2	-3	-2	-3	-4	-5	-6
Т	-3	-1	-1	-1	0	-1	-2	-3	-2	-3	-4
Т	-4	-2	-2	-2	0	+1	0	-1	-2	-1	-2
A	-5	-3	-1	-2	-1	0	+2<	-+1<	- 0 <	1 K	-2
G	-6	-4	-2	-2	-2	-1	+1	+1	0	-1	0

27 / 35

Heaviest local paths in sequence alignment

- How to find heaviest subpaths (local path)?
- Define that the empty path has score 0.
- It is enough to search for subpaths (local paths) with weight greater than 0.
- No heaviest path can have a prefix with negative score
- Add an edge with score 0 from the first node to all other nodes.

Local alignment DAG and recurrence

$$S[i,j] = \max \begin{cases} 0 \\ S[i-1,j-1] + \delta(a_i, b_j) \\ S[i-1,j] + \delta(a_i, -) \\ S[i,j-1] + \delta(-, b_j) \end{cases}$$

Local alignment: Example

i

$$\begin{split} \delta(a_i, b_j) &= 1, \text{ if } a_i = b_j \\ \delta(a_i, b_j) &= -1, \text{ otherwise } \\ j & \delta(a_i, -) = \delta(-, b_j) = -1 \end{split}$$

		А	А	С	Т	Т	А	С	Т	Т	G
	0	0	0	0	0	0	0	0	0	0	0
С	0	0	0	1	0	0	0	1	0	0	0
А	0	1	1	0	0	0	1	0	0	0	0
Т	0	0	0	0	1	1	0	0	1	1	0
Т	0	0	0	0	1	2	1	0	1	2	1
А	0	1	1	0	0	1	3	2	1	1	1

30 / 35

Longest common subsequence

Global alignment with

• $\delta(a_i, b_j) = 1$ when $a_i = b_j$ and otherwise $\delta(a_i, b_j) = -\infty$

•
$$\delta(a_i, -) = \delta(-, b_j) = 0$$

gives the length of the longest common subsequence C of A and B:

Longest sequence C that can be obtained by deleting 0 or more symbols from A and also by deleting 0 or more symbols from B.

AACGCATACGG ACGACTGATCG

ACGCTACG

• Connection: $d_{\text{ID}}(A, B) = m + n - 2 \cdot |\text{LCS}(A, B)|$, where $d_{\text{ID}}(A, B)$ is the edit distance with substitution cost ∞

Outline

Sequence similarity

Dynamic programming

Edit distance with dynamic programming

Sequence similarity problems

Sequence alignments

Study group assignments

Study Group 1: Firstnames A-I

Read the following article before coming to the study group:

Sear R. Eddy: How do RNA folding algorithms work? *Nature Biotechnology* **22**, 1457 - 1458 (2004).

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

- RNA secondary structure prediction.
- Basic dynamic programming formulation.
- At study group, give an example of RNA secondary structure, how the recurrence is derived for its computation, and how the recurrence is evaluated.

Study Group 2: Firstnames J-Ma

- Read pages 42–45 from Sung: Algorithms in Bioinformatics: A Practical Introduction, CRC Press 2010
 - General gap penalty model
 - Affine gap penalty model
 - Copies distributed at the lecture (ask lecturer for a pdf if you were not present)
- In the study group
 - ► Explain the idea of each of the tables in the recurrence for the affine gap model: *V*, *G*, *F*, and *E*.
 - What is the best global alignment of CGAGAT and CAT using the affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for gap opening, -1 for gap extension. What is the score of the alignment?

Study Group 3: Firstnames Me-Z

- Read pages 203–207 from Jones and Pevzner.
 - Gene prediction by spliced alignment:
 - Application/extension of heaviest path on a DAG
- At study group, explain the idea visually and explain how the recurrences are derived. What is the running time of the algorithm?