582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

19.9.2013

Slides by Leena Salmela, adapted from slides by Veli Makinen

Sequence similarity

» Genome rearrangement problem assumed we know for each gene in
species A its counterpart in species B (if exists).
» Orthologous genes: same ancestor in evolution
» Paralogous genes: gene duplication
» Homolog = Ortholog or paralog
» Often sequence similarity is the only way to predict whether two
genes are homologs
» Very unlikely that same (long) sequences have evolved independently
from different ancestors
> ... except horizontal gene transfer

)

35

Sequence similarity vs. distance

v

Let A and B be two strings (sequences) from alphabet ¥
Many different ways to define similarity or distance of A and B
Recall Hamming distance dy(A, B)

» Only defined when |A| = |B].
What is the simplest measure to extend Hamming distance to
different length strings?

» For many purposes it is useful if the distance is a metric

\4

v

v

3/35

Edit distance

» The most studied distance function extending Hamming distance is
unit cost edit distance or Levenshtein distance.

» d; (A, B) is the minimum amount of single symbol
insertions, deletions and substitutions
required to convert A into B.

» For example, when A = "tukholma” and B = "stockholm” we have
di(A,B) =4

» insert s, substitute u — o, insert c, delete a
» ... orinsert s, insert o, substitute u — c, delete a
» ... or is there a better sequence of edits?

-t u - k h oI m a
s t o c k h ol m -

35

Dynamic Programming

» Some problems can be broken into smaller subproblems so that the
solution to the problem can be constructed from the solutions of the
subproblems.

» This often leads to several instances of the same subproblem

» Dynamic programming is a technique to organize the computation
and save the solutions of the subproblems so that they only need to
be solved once.

» We will use dynamic programming to compute edit distance.

35

Example: Computing Fibonacci numbers

» Remember Fibonacci numbers:

F(n) = 1 iftnh=1lorn=2
| F(n—2)4+ F(n—1) otherwise

» The recursion to compute
F(n) contains many identical
subproblems:

» We can avoid solving the same
subproblem several times by
saving the results in an array:

T2 05]508)
A

6/35

Example: Computing Fibonacci numbers
» Remember Fibonacci numbers:
F(n):{l ifn=1lorn=2

F(n—2)+ F(n—1) otherwise

» We can avoid solving the same

» The recursion to compute subproblem several times by
F(n) contains many identical saving the results in an array:
subproblems: F(n):

Fl(n)f 1 2 th 1. A1
:if n=1or n=2 then
2: return 1 2 f F 1
3: else 3: for i <~ 3 to n do
4: return F(n—2)+ F(n—1) 4: fi+ fi_o+fi_1

5. return f,

Example: Shortest path in a DAG

DAG=directed acyclic graph Lightest path from s to v?

cost = min(1) =1

cost =min(5,3+1) =4

v
t=min(4+2,3+4) =6
cost = min(1+2,242) =3 oSt=min(4+23+4)

cost = min(2) =2 cost = min(2) =2

S
Topological sort aeeoee

Edit distance

>

Consider an optimal listing of edits to convert

the prefix ajas ... a; of Ainto prefix biby...b; of B

Let the corresponding edit distance be d;(a1a>...aj, bibs...bj)
If a; = bj, we know that

dL(3182 < b1b2 . bj) = d/_(3132 co.di—1, b1b2 . bj—l)
Otherwise either a; is substituted by bj, or a; is deleted, or b; is
inserted in the optimal list of edits

Hence we have

dL(alag ...aj, b1b2 . bj) =
d/_(3132 ...aj_1,biby... bjfl) + (if aj = bj then 0 else 1)
min dL(alag...a,-,l,blbz...bj)+1
d/_(3132 ...aj,biby ... bjfl) +1

35

Edit distance matrix D[/, j]

> Let D[i,j] denote dL(alag ...aj,biby ... bj).

» Obviously D[0, /] =, and DJ[i,0] = i because the other prefix is of
lentgh O
» Induction from previous slide gives:
D[i —1,j — 1] + (if a; = b; then 0 else 1)
D[i,j]=minq D[i—1,j]+1
Dli,j—1]+1
» Matrix D can be computed in many evaluation orders:

» D[i—1,j—1], D[i — 1,/], and DJ[i,j — 1] must be available when
computing D[/, /]
» E.g. compute D row-by-row, column-by-column...

v

Running time to compute D[m, n] is O(mn)

10/35

Edit distance: example

041

11

Edit distance matrix as a DAG

o|Jofol~]lo|w 4L\3?4
ol~f~lJolwlst|o] < w
~lofo|lw] < 3N\4 o[o
olvfwv]|< 3u\/4 ojo|~
o< | < 3N\4 alolo|~
N
< | Q_JNA3 t[|wlw]lo|~
™ n_/_H%_ sl |w]o|~
=] aw Sfolopr~] e
J.N\I almls]w]o ~ [oo
N

nw] |wv]o]~fo
»lslxl<fol—1E X

A)

-

-

3

cost =min(3+0,4+1,4+1)

Finding optimal alignments

One alignment:

» Store pointer to each cell telling from which cell the minimum was
obtained.

» Follow the pointers from (m, n) to (0, 0).
> Reverse the list.
All alignments:

» Backtrack from (m, n) to (0,0) by checking at each cell (/,/) on the
path whether the value D[/, j| could have been obtained from cell
(i,j—1), (i—1,j—1), or (i — 1,j).

» Explore all directions.

» All three directions possible.
» Exponential number of optimal paths in the worst case.

13 /35

Edit distance: example

-t-ukholma
stockholm -

~-tu-kholma
stockholm-

—

T3]

4

6178
6178

415(6
415

3

5 |

=x

4105]16(7

3

NI\

3

2131456 7]8]9

{20317]

Loel

13\1

0t1

1

2122|2434
N\

5151545514

gl18|8|7|7]7]7]|6]5

t

u

k[3]13]|3]3]3

hlalalalala]s

(@)

I]16]6]6]5(5]6]5 4§\3 4

ml7)7]|7]6[6]6]6[|5]4

a

14 /35

Searching homologs with edit distance?

» Take DNA sequences A and B of two genes suspected to be
homologs.

» Edit distance of A and B can be huge even if A and B are true
homologs:

» One reason is silent mutations that alter DNA sequence so that the
codons still encode the same amino acids
> In principle, A and B can differ in almost every third nucleotide.
» Better to compare protein sequences.

» Some substitutions are more likely than the others...
» Lot of tuning needed to use proper weight for operations

Better models = 582483 Biological Sequence Analysis (4cr), period Ill

15/35

Edit distance and NGS

» High-throughput next-generation sequencing (NGS) has raised again
the issue of using edit distance.

» Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g.
cells of a patient.
» The reads are aligned against the reference genome
» Typically only SNPs and measurement errors need to be taken into
account.
» The occurrence of the reads in the reference genome can be
determined by finding the substring of the genome whose edit distance
(or Hamming distance) to the reads is minimum.
» Approximate string matching problem.

16 /35

NGS-atlas: RNA-seq, ChlP-seq, (targeted) resequencing,
de novo sequencing, metagenomics...

DNA
DNA
DNA

RNA

Protein

- epigenomics
? metagenormics e

? .
' gene P ChlP-seq
P denovo T ——" g

enrichment

Targeted resequencing

17/35

Approximate string matching with Hamming distance dy

» k-mismatches problem: Search all occurrences O of pattern P[1, m|
in text T[1, n] such that P differs in at most k positions from the
occurrence substring.

» More formally: j € O is a k-mismatch occurrence position of P in T if
du(P, Tlj,j+m—1]) < k
> Naive algorithm:

» Compare P against each T[j,j + m — 1] but skip as soon as k + 1
mismatches are encountered.
» Expected linear time!

18/35

Approximate string matching with edit distance d;

» k-errors problem is the approximate string matching problem with
edit distance:
» More formally: j € O is a k-errors occurrence with (end)position j of P
in T if and only if d, (P, T[j,j]) < k for some J'.
» Can be solved with the “zero the first row trick”:
» DJ0,/] = 0 for all j.
» Otherwise the computation is identical to edit distance computation
using matrix D.
» DI/, j] then equals the minimum number of edits to convert P[1, /] into
some suffix of T[1,]].
» If D[m,] < k then P can be converted to some substring T[/’,] with
at most k edit operations.

19/35

Approximate string matching: example

(G N=N RoN NoVN WoVH Ne\ ZMW
Flol—~]|laf|—~]—~4N] ™
Flo]l—|—~ .I.N\Z [so Nsa
|G} =N ¥=) J lh_\2 528 Ho'H Ns\

<C ON__I. — NN 1@”
=i E=2 E=l K31 Bal 1N\2 o
Flol—~|—~ .I_N\n/_ o<
Ojo |oY% 1N_\2 [sol IR IR
< ON\.I. N]S
<o~ |N]|]t]w
Ol N[|wO]O
VI<fHIH]I<]O

AAC-TTACTTG AACTTAC-TT-G

AAC-TTA-CTTG

CATTAG

CATTAG

CATTAG

20 /35

NGS atlas and approximate string matching 1/3

v

Aligning reads from ChlP-seq and targeted sequences works using
basic approximate string matching.

v

Tens of millions of reads, speed is an issue.

v

Reference genome can be preprocessed to speed up search.

v

Suffix tree like techniques work but...

» Suffix tree of human genome takes 50-200 GB!
» More space-efficient index structures have been developed (e.g. based
on Burrows-Wheeler transform that drop the space to ~ 3 GB.

Faster algorithms = 58093 String Processing Algorithms (4 cr), period Il

21/35

NGS atlas and approximate string matching 2/3

» Reads from RNA-seq need more advanced alignment:
» Read can span two exons

exon exon

ACGATCGATGCGT... ...AGTTATCTATCTACA

N\

ACGACEGATGC TTTATCTAACTCA

ACGATCGATGCTTTATCTATCTACA
ACGACCGATGCTTTATCTAACT-CA

NGS atlas and approximate string matching 3/3

» de novo sequenceing and metagenomics are much harder since there
is no reference genome.

» Shortest approximate superstring (exercise 2.5)

» How to modify edit distance computations for overlaps?
> Next week's exercise

23 /35

Variations: Heaviest path in a DAG

Heaviest path from s to v?

cost = max(1) =1

cost = max(5,4+1)=5

v
t = 5+2,444)=38
cost = max(1+2,2+2)=4 cost = max(5 +2,4+4)

cost = max(2) =2 cost = max(2) =2

S
Topological sort aeeoee

24 /35

Heaviest paths in sequence alignment

» Consider the DAG of edit distance matrix.
» Turn minimization into maximization.

» Give score §(aj, bj) for diagonal edges.

» Give score d(aj, —) for vertical edges.

» Give score 6(—, bj) for horizontal edges.

> Longest path in the DAG corresponds to the global alignment with
highest score

» Typically 6(aj, bj) = 1 if a; = b; and otherwise d(a;, bj) = —p
» Typically 6(a;, =) = d(—, bj) = —0o

25/35

Global alignment DAG and recurrence

score =max(3+1,4—-1,4—-1)=14

S[i —1,j — 1] + &(a;, bj)
S[i,j]= max{ S[i—1,j]+d(aj,—)
Sli,j— 1]+ 6(—, bj)

26 /35

Global alignment: Example

(5(3,‘, bj) =].7 if aj = bj

d(ai, bj) = —1, otherwise i d(ai, =) =96(—,bj)=—-1

AJTA]IC]ITITIA]IC]IT]|IT]G
ofl-1|2|3]4ls|6]|-7|-8]-9]-10
clalal2al=213]4|ls5|6]-7]-=s
Al2lolod1]|2l3]2|3]|4]|5]6
Tl 1|11 lo-1]2]|3]|2]|3]-4
Tlala2l2l2lol¥lol-1]2]1]-2
Al-51-3|-1]-2]-1]0[+24+140<4-11-2
G|6]|-4]|2|2|2}-1fj+1|+1]J0}|-1]0

Heaviest local paths in sequence alignment

How to find heaviest subpaths (local path)?

v

v

Define that the empty path has score 0.

v

It is enough to search for subpaths (local paths) with weight greater
than 0.

No heaviest path can have a prefix with negative score

v

v

Add an edge with score 0 from the first node to all other nodes.

28 /35

Local alignment DAG and recurrence

Score = max(0,3+1,4—-1,4—-1)=4

0

5[/ — l,j — 1] + 5(3,‘, bj)
S[i—1,j]+6(ai,—)
S[i,j = 1]+ 6(=, b))

S[i,j] = max

29/35

Local alignment: Example

(5(3,‘, bj) =].7 if aj = bj

d(ai, bj) = —1, otherwise o(ay, (=, bj)=-1
AlJA]|C A T|T]|G
0J]O0]JO0]O 0 01]0]0O0
cpojojoqg1 0 01010
AlJOoOj1]111]10 1 0]J]0]O
i T|J{O0O]JO0O]O0O]O 0 11110
T|J{O0O]JO0O]O]O 1 11211
AlOoj1]11]0 3 11111
G{oOJOoO]JO]O 2 11012

30/35

Longest common subsequence

> Global alignment with
» 0(aj, bj) = 1 when a; = b; and otherwise d(a;, bj) = —oc0
> (5(2,‘, 7) = 6(7, bj) =0
gives the length of the longest common subsequence C of A and B:

» Longest sequence C that can be obtained by deleting O or more
symbols from A and also by deleting 0 or more symbols from B.

AACGCATACGG ACGACTGATCG

ACGCTACG

» Connection: dip(A,B) = m+n—2-|LCS(A, B)|,
where dip(A, B) is the edit distance with substitution cost co

31/35

Outline

Study group assignments

32/35

Study Group 1: Firstnames A-|

» Read the following article before coming to the study group:

Sear R. Eddy: How do RNA folding algorithms work? Nature
Biotechnology 22, 1457 - 1458 (2004).
http://wuw.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457 .html

» RNA secondary structure prediction.
» Basic dynamic programming formulation.

» At study group, give an example of RNA secondary structure, how the
recurrence is derived for its computation, and how the recurrence is
evaluated.

33/35

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

Study Group 2: Firstnames J-Ma

» Read pages 42-45 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010
» General gap penalty model
> Affine gap penalty model
» Copies distributed at the lecture (ask lecturer for a pdf if you were not
present)

> In the study group
» Explain the idea of each of the tables in the recurrence for the affine
gap model: V, G, F, and E.
» What is the best global alignment of CGAGAT and CAT using the
affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for
gap opening, -1 for gap extension. What is the score of the alignment?

34 /35

Study Group 3: Firstnames Me-Z

» Read pages 203—-207 from Jones and Pevzner.

» Gene prediction by spliced alignment:
» Application/extension of heaviest path on a DAG

» At study group, explain the idea visually and explain how the
recurrences are derived. What is the running time of the algorithm?

35/35

	Sequence similarity
	Dynamic programming
	Edit distance with dynamic programming
	Sequence similarity problems
	Sequence alignments
	Study group assignments

