
582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

19.9.2013

Slides by Leena Salmela, adapted from slides by Veli Mäkinen

Sequence similarity

I Genome rearrangement problem assumed we know for each gene in
species A its counterpart in species B (if exists).

I Orthologous genes: same ancestor in evolution
I Paralogous genes: gene duplication
I Homolog = Ortholog or paralog

I Often sequence similarity is the only way to predict whether two
genes are homologs

I Very unlikely that same (long) sequences have evolved independently
from different ancestors

I ... except horizontal gene transfer

2 / 35

Sequence similarity vs. distance

I Let A and B be two strings (sequences) from alphabet Σ

I Many different ways to define similarity or distance of A and B
I Recall Hamming distance dH(A,B)

I Only defined when |A| = |B|.
I What is the simplest measure to extend Hamming distance to

different length strings?
I For many purposes it is useful if the distance is a metric

3 / 35

Edit distance

I The most studied distance function extending Hamming distance is
unit cost edit distance or Levenshtein distance.

I dL(A,B) is the minimum amount of single symbol
insertions, deletions and substitutions
required to convert A into B.

I For example, when A = ”tukholma” and B = ”stockholm” we have
dL(A,B) = 4:

I insert s, substitute u → o, insert c, delete a
I ... or insert s, insert o, substitute u → c, delete a
I ... or is there a better sequence of edits?

- t u - k h o l m a
s t o c k h o l m -

4 / 35

Dynamic Programming

I Some problems can be broken into smaller subproblems so that the
solution to the problem can be constructed from the solutions of the
subproblems.

I This often leads to several instances of the same subproblem

I Dynamic programming is a technique to organize the computation
and save the solutions of the subproblems so that they only need to
be solved once.

I We will use dynamic programming to compute edit distance.

5 / 35

Example: Computing Fibonacci numbers

I Remember Fibonacci numbers:

F (n) =

{
1 if n = 1 or n = 2
F (n − 2) + F (n − 1) otherwise

I The recursion to compute
F (n) contains many identical
subproblems:

8

3

1 2

1 1

5

2

1 1

3

1 2

1 1

I We can avoid solving the same
subproblem several times by
saving the results in an array:

1 1 2 3 5 8

6 / 35

Example: Computing Fibonacci numbers

I Remember Fibonacci numbers:

F (n) =

{
1 if n = 1 or n = 2
F (n − 2) + F (n − 1) otherwise

I The recursion to compute
F (n) contains many identical
subproblems:

F (n):

1: if n = 1 or n = 2 then
2: return 1
3: else
4: return F (n − 2) + F (n − 1)

I We can avoid solving the same
subproblem several times by
saving the results in an array:

F (n):

1: f1 ← 1
2: f2 ← 1
3: for i ← 3 to n do
4: fi ← fi−2 + fi−1

5: return fn

7 / 35

Example: Shortest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

DAG=directed acyclic graph Lightest path from s to v?

s

v

cost = min(1) = 1

cost = min(2) = 2

cost = min(1 + 2, 2 + 2) = 3

cost = min(2) = 2

cost = min(5, 3 + 1) = 4

cost = min(4 + 2, 3 + 4) = 6

1 2 3 4 5 6 7Topological sort

8 / 35

Edit distance

I Consider an optimal listing of edits to convert
the prefix a1a2 . . . ai of A into prefix b1b2 . . . bj of B

I Let the corresponding edit distance be dL(a1a2 . . . ai , b1b2 . . . bj)

I If ai = bj , we know that
dL(a1a2 . . . ai , b1b2 . . . bj) = dL(a1a2 . . . ai−1, b1b2 . . . bj−1)

I Otherwise either ai is substituted by bj , or ai is deleted, or bj is
inserted in the optimal list of edits

I Hence we have

dL(a1a2 . . . ai , b1b2 . . . bj) =

min

dL(a1a2 . . . ai−1, b1b2 . . . bj−1) + (if ai = bj then 0 else 1)
dL(a1a2 . . . ai−1, b1b2 . . . bj) + 1
dL(a1a2 . . . ai , b1b2 . . . bj−1) + 1

9 / 35

Edit distance matrix D[i , j]

I Let D[i , j] denote dL(a1a2 . . . ai , b1b2 . . . bj).

I Obviously D[0, j] = j and D[i , 0] = i because the other prefix is of
lentgh 0

I Induction from previous slide gives:

D[i , j] = min

D[i − 1, j − 1] + (if ai = bj then 0 else 1)
D[i − 1, j] + 1
D[i , j − 1] + 1

I Matrix D can be computed in many evaluation orders:
I D[i − 1, j − 1], D[i − 1, j], and D[i , j − 1] must be available when

computing D[i , j]
I E.g. compute D row-by-row, column-by-column...

I Running time to compute D[m, n] is O(mn)

10 / 35

Edit distance: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

11 / 35

Edit distance matrix as a DAG

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

cost=4

cost=?

cost=3

cost=4

cost = min(3 + 0, 4 + 1, 4 + 1) = 3

1

01 1

1

12 / 35

Finding optimal alignments

One alignment:

I Store pointer to each cell telling from which cell the minimum was
obtained.

I Follow the pointers from (m, n) to (0, 0).

I Reverse the list.

All alignments:

I Backtrack from (m, n) to (0, 0) by checking at each cell (i , j) on the
path whether the value D[i , j] could have been obtained from cell
(i , j − 1), (i − 1, j − 1), or (i − 1, j).

I Explore all directions.
I All three directions possible.
I Exponential number of optimal paths in the worst case.

13 / 35

Edit distance: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

- t - u k h o l m a
s t o c k h o l m -

- t u - k h o l m a
s t o c k h o l m -

14 / 35

Searching homologs with edit distance?

I Take DNA sequences A and B of two genes suspected to be
homologs.

I Edit distance of A and B can be huge even if A and B are true
homologs:

I One reason is silent mutations that alter DNA sequence so that the
codons still encode the same amino acids

I In principle, A and B can differ in almost every third nucleotide.

I Better to compare protein sequences.
I Some substitutions are more likely than the others...
I Lot of tuning needed to use proper weight for operations

Better models =⇒ 582483 Biological Sequence Analysis (4cr), period III

15 / 35

Edit distance and NGS

I High-throughput next-generation sequencing (NGS) has raised again
the issue of using edit distance.

I Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g.
cells of a patient.

I The reads are aligned against the reference genome
I Typically only SNPs and measurement errors need to be taken into

account.
I The occurrence of the reads in the reference genome can be

determined by finding the substring of the genome whose edit distance
(or Hamming distance) to the reads is minimum.

I Approximate string matching problem.

16 / 35

NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing,
de novo sequencing, metagenomics...

17 / 35

Approximate string matching with Hamming distance dH

I k-mismatches problem: Search all occurrences O of pattern P[1,m]
in text T [1, n] such that P differs in at most k positions from the
occurrence substring.

I More formally: j ∈ O is a k-mismatch occurrence position of P in T if
dH(P,T [j , j + m − 1]) ≤ k

I Naive algorithm:
I Compare P against each T [j , j + m − 1] but skip as soon as k + 1

mismatches are encountered.
I Expected linear time!

18 / 35

Approximate string matching with edit distance dL

I k-errors problem is the approximate string matching problem with
edit distance:

I More formally: j ∈ O is a k-errors occurrence with (end)position j of P
in T if and only if dL(P,T [j ′, j]) ≤ k for some j ′.

I Can be solved with the “zero the first row trick”:
I D[0, j] = 0 for all j .
I Otherwise the computation is identical to edit distance computation

using matrix D.
I D[i , j] then equals the minimum number of edits to convert P[1, i] into

some suffix of T [1, j].
I If D[m, j] ≤ k then P can be converted to some substring T [j ′, j] with

at most k edit operations.

19 / 35

Approximate string matching: example

A A C T T A C T T G

0 0 0 0 0 0 0 0 0 0 0

C 1 1 1 0 1 1 1 0 1 1 1

A 2 1 1 1 1 2 1 1 1 2 2

T 3 2 2 2 1 1 2 2 1 1 2

T 4 3 3 3 2 1 2 3 2 1 2

A 5 4 3 4 3 2 1 2 3 2 2

G 6 5 4 4 4 3 2 2 3 3 2

i

j

A A C - T T A - C T T G
C A T T A G

A A C - T T A C T T G
C A T T A G

A A C T T A C - T T - G
C A T T A G

20 / 35

NGS atlas and approximate string matching 1/3

I Aligning reads from ChIP-seq and targeted sequences works using
basic approximate string matching.

I Tens of millions of reads, speed is an issue.

I Reference genome can be preprocessed to speed up search.
I Suffix tree like techniques work but...

I Suffix tree of human genome takes 50-200 GB!
I More space-efficient index structures have been developed (e.g. based

on Burrows-Wheeler transform that drop the space to ∼ 3 GB.

Faster algorithms =⇒ 58093 String Processing Algorithms (4 cr), period II

21 / 35

NGS atlas and approximate string matching 2/3

I Reads from RNA-seq need more advanced alignment:
I Read can span two exons

exon
ACGATCGATGCGT...

exon
...AGTTATCTATCTACA

︷ ︸︸ ︷
ACGACCGATGC

︷ ︸︸ ︷
TTTATCTAACTCA

A C G A T C G A T G C T T T A T C T A T C T A C A
A C G A C C G A T G C T T T A T C T A A C T - C A

22 / 35

NGS atlas and approximate string matching 3/3

I de novo sequenceing and metagenomics are much harder since there
is no reference genome.

I Shortest approximate superstring (exercise 2.5)
I How to modify edit distance computations for overlaps?

I Next week’s exercise

23 / 35

Variations: Heaviest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

Heaviest path from s to v?

s

v

cost = max(1) = 1

cost = max(2) = 2

cost = max(1 + 2, 2 + 2) = 4

cost = max(2) = 2

cost = max(5, 4 + 1) = 5

cost = max(5 + 2, 4 + 4) = 8

1 2 3 4 5 6 7Topological sort

24 / 35

Heaviest paths in sequence alignment

I Consider the DAG of edit distance matrix.

I Turn minimization into maximization.

I Give score δ(ai , bj) for diagonal edges.

I Give score δ(ai ,−) for vertical edges.

I Give score δ(−, bj) for horizontal edges.

I Longest path in the DAG corresponds to the global alignment with
highest score

I Typically δ(ai , bj) = 1 if ai = bj and otherwise δ(ai , bj) = −µ
I Typically δ(ai ,−) = δ(−, bj) = −σ

25 / 35

Global alignment DAG and recurrence

score=4

score=?

score=3

score=4

score = max(3 + 1, 4− 1, 4− 1) = 4

-1

+1-1 -1

-1

S [i , j] = max

S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

26 / 35

Global alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj
δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 0 -1 -2 -3 -2 -3 -4 -5 -6

T -3 -1 -1 -1 0 -1 -2 -3 -2 -3 -4

T -4 -2 -2 -2 0 +1 0 -1 -2 -1 -2

A -5 -3 -1 -2 -1 0 +2 +1 0 -1 -2

G -6 -4 -2 -2 -2 -1 +1 +1 0 -1 0

i

j

27 / 35

Heaviest local paths in sequence alignment

I How to find heaviest subpaths (local path)?

I Define that the empty path has score 0.

I It is enough to search for subpaths (local paths) with weight greater
than 0.

I No heaviest path can have a prefix with negative score

I Add an edge with score 0 from the first node to all other nodes.

28 / 35

Local alignment DAG and recurrence

score=4

score=?

score=3

score=4

score=0

score = max(0, 3 + 1, 4− 1, 4− 1) = 4

0

0

0

0

-1

+1-1 -1

-1

S [i , j] = max

0
S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

29 / 35

Local alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj
δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 1 0 0 0

A 0 1 1 0 0 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0 1 1 0

T 0 0 0 0 1 2 1 0 1 2 1

A 0 1 1 0 0 1 3 2 1 1 1

G 0 0 0 0 0 0 2 2 1 0 2

i

j

30 / 35

Longest common subsequence

I Global alignment with
I δ(ai , bj) = 1 when ai = bj and otherwise δ(ai , bj) = −∞
I δ(ai ,−) = δ(−, bj) = 0

gives the length of the longest common subsequence C of A and B:
I Longest sequence C that can be obtained by deleting 0 or more

symbols from A and also by deleting 0 or more symbols from B.

AACGCATACGG ACGACTGATCG

ACGCTACG

I Connection: dID(A,B) = m + n − 2 · |LCS(A,B)|,
where dID(A,B) is the edit distance with substitution cost ∞

31 / 35

Outline

Sequence similarity

Dynamic programming

Edit distance with dynamic programming

Sequence similarity problems

Sequence alignments

Study group assignments

32 / 35

Study Group 1: Firstnames A-I

I Read the following article before coming to the study group:

Sear R. Eddy: How do RNA folding algorithms work? Nature
Biotechnology 22, 1457 - 1458 (2004).
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

I RNA secondary structure prediction.
I Basic dynamic programming formulation.

I At study group, give an example of RNA secondary structure, how the
recurrence is derived for its computation, and how the recurrence is
evaluated.

33 / 35

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

Study Group 2: Firstnames J-Ma

I Read pages 42–45 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010

I General gap penalty model
I Affine gap penalty model
I Copies distributed at the lecture (ask lecturer for a pdf if you were not

present)

I In the study group
I Explain the idea of each of the tables in the recurrence for the affine

gap model: V , G , F , and E .
I What is the best global alignment of CGAGAT and CAT using the

affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for
gap opening, -1 for gap extension. What is the score of the alignment?

34 / 35

Study Group 3: Firstnames Me-Z

I Read pages 203–207 from Jones and Pevzner.
I Gene prediction by spliced alignment:
I Application/extension of heaviest path on a DAG

I At study group, explain the idea visually and explain how the
recurrences are derived. What is the running time of the algorithm?

35 / 35

	Sequence similarity
	Dynamic programming
	Edit distance with dynamic programming
	Sequence similarity problems
	Sequence alignments
	Study group assignments

