
582670 Algorithms for Bioinformatics

Lecture 1: Primer to algorithms and molecular biology

3.9.2013

These slides are based on previous years’ slides of Leena Salmela and Veli Mäkinen

Course format
Thursday 12-14

Tuesday 10-12

Tuesday 12-14

2 / 30

Grading

I Exam 48 points
I Exercises 12 points

I 30% =⇒ 1
I 85% =⇒ 12

I Grading ∼ 30 =⇒ 1, ∼ 50 =⇒ 5 (depending on difficulty of exam)

I Tuesday study group is mandatory!
(Inform beforehand if you cannot attend)

3 / 30

Course overview

I Introduction to algorithms in the
context of molecular biology

I Targeted for
I biology and medicine students
I first year bioinformatics students
I CS / Math / Statistics students

thinking of specializing in
bioinformatics

I Some programming skills required
I We will use Python in this

course

I Not as systematic as other CS
algorithm courses, emphasis on
learning some design principles
and techniques with the biological
realm as motivation

CS Data
Structures

Molecular
Biology

CS Design
and Analysis
of Algorithms

Algorithms
for

Bioinformatics

4 / 30

Algorithms for Bioinformatics

I State-of-the-art algorithms in bioinformatics are rather involved

I Instead, we study toy problems motivated by biology (but not too far
from reality) that have clean and introductory level algorithmic
solutions

I The goal is to arouse interest to study the real advanced algorithms in
bioinformatics!

I We avoid statistical notions to give algorithmic concepts the priority

I Continue to further bioinformatics course to learn the practical realm

5 / 30

Algorithm

input output

Well-defined problem Solution to problem

→→→ . . . →︸ ︷︷ ︸
number of steps: f (size of input)

Homework:
Find out what the following algorithm running time notions mean:

f (n) ∈ O(g(n)) g(n) ∈ Ω(f (n))

f (n) ∈ o(g(n)) g(n) ∈ ω(f (n))

f (n) ∈ Θ(g(n))

6 / 30

Algorithms in Bioinformatics

input output=input‘ output‘=input“ output“‘

Weakly defined problem Solution to problem

I Reasons:
I Biological problems usually too complex to admit a simple algorithmic

formulation
I Problem modeling sometimes leads to statistical notions

I Problematic for CS theory:
I optimal solutions to subproblems do not necessarily lead to best global

solution

7 / 30

Algorithms in Bioinformatics

Plenty of important subproblems where algorithmic techniques have been
vital:

I Fragment assembly =⇒ human genome

I Design of microarrays =⇒ gene expression measurements

I Sequence comparison =⇒ comparative genomics

I Phylogenetic tree construction =⇒ evolution modeling

I Genome rearrangements =⇒ comparative genomics, evolution

I Motif finding =⇒ gene regulatory mechanism

I Biomolecular secondary structure prediction =⇒ function

I Analysis of high-throughput sequencing data =⇒ genomic variations
in populations

8 / 30

Course prerequisites

I Programming skills
I High-school level biology++

I 57780: Molecular genetics reading group recommended to be taken in
parallel

I To avoid overlap with other bioinformatics courses, we do not cover
any more biology than is necessary to motivate the problems

9 / 30

Outline

Crash Course in Python

Study Group Assignments

10 / 30

Programming in this Course

I We will use Python
I What we need (in this course):

I Built-in data types
I Syntax for control flow statements
I Function definitions

I What we can omit (i.e. software engineering):
I Standard library, OOP, exceptions, I/O, etc.

11 / 30

Assignment

Pseudocode
b ← 2

a← b

Python
b = 2

a = b

print a

12 / 30

Arithmetic

Pseudocode
DIST (x1, y1, x2, y2)

1. dx ← (x2 − x1)2

2. dy ← (y2 − y1)2

3. return
√
dx + dy

Python
from math import sqrt

def dist(x1, y1, x2, y2):

dx = pow(x2-x1, 2)

dy = pow(y2-y1, 2)

return sqrt(dx+dy)

print dist(0, 0, 3, 4)

13 / 30

Conditional

Pseudocode
MAX (a, b)

1 if (a < b)

2 return b

3 else

4 return a

Python
def MAX(a, b):

if a < b:

return b

else:

return a

print MAX(1,99)

14 / 30

for loops

Pseudocode
SumIntegers (n)

1 sum← 0

2 for i ← 1 to n

3 sum← sum + i

4 return sum

Python
def SUMINTEGERS(n):

sum = 0

for i in range(1,n+1):

sum = sum + i

return sum

print SUMINTEGERS(10)

15 / 30

while loops

Pseudocode
AddUntil (b)

1 i ← 1

2 total ← i

3 while total ≤ b

4 i ← i + 1

5 total ← total + i

6 return i

Python
def ADDUNTIL(b):

i = 1

total = i

while total <= b:

i = i + 1

total = total + i

return i

print ADDUNTIL(25)

16 / 30

Recursion

Pseudocode

F (n) =


0, when n = 0

1, when n = 1

F (n − 1) + F (n − 2), otherwise

Python
def RECURSIVEFIBONACCI(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

a = RECURSIVEFIBONACCI(n-1)

b = RECURSIVEFIBONACCI(n-2)

return a+b

print RECURSIVEFIBONACCI(8)

17 / 30

Lists

Python
l = [0] * 3

l[0] = 1 # list is mutable

l = range(1,4)

l.append(’four’)

l = [2**i for i in range(6)]

l2 = l[2:4]

Output
[0,0,0]

[1,0,0]

[1,2,3]

[1,2,3,’four’]

[1,2,4,8,16,32]

[4,8]

18 / 30

List access

Pseudocode
FIBONACCI (n)

1 F0 ← 0

2 F1 ← 1

3 for i ← 2 to n

4 Fi ← Fi−1 + Fi−2

5 return Fn

Python
def FIBONACCI(n):

F = [0]*(n+1)

F[0] = 0

F[1] = 1

for i in range(2,n+1):

F[i] = F[i-1] + F[i-2]

return F[n]

print FIBONACCI(8)

19 / 30

Strings

Python
s=’Hello’

s[0] = ’C’ # error: str

s.append(’!’) # is immutable

s = s + ’!’

s = s[:5]

s = s.upper()

Output
Hello

Hello!

Hello

HELLO

20 / 30

Immutable vs Mutable

Immutable (int, str, ...)
a = 2

b = a

b = b + 1 # does not change a

s = ’Hello’

t = s

t = t + ’!’ # does not change s

Mutable (list, set, dict, ...)

l = [0]

m = l

m = m + [1] # changes also l

l = [0]

m = l

m = [1] # does not change l

l = [0]

m = l[:] # shallow copy of l

m = m + [1] # does not change l

21 / 30

Pass arguments by reference? - No.

Immutable (int, str, ...)

def ADDONE(x,y):

x = x + 1 # x and y

y = y + 1 # are local

return a tuple instead

def ADDONE(x,y):

return x+1, y+1

x,y = ADDONE(x,y)

Mutable (list, set, dict, ...)

def CLEAR(l):

l = [] # l is local

any mutable can still be

changed in place, e.g.:

def CLEAR(l):

l[:] = []

def ADDONE(l,i):

l[i] = l[i] + 1

22 / 30

Multidimensional lists

Python
l = [[0] * 2] * 3 # Caution!

You probably

don’t want

to do this!

l[0][0] = 1

This is safe:

l = [[0]*2 for i in range(3)]

l[0][0] = 1

Output (print l)
[[0, 0], [0, 0], [0, 0]]

[[1, 0], [1, 0], [1, 0]]

[[0, 0], [0, 0], [0, 0]]

[[1, 0], [0, 0], [0, 0]]

23 / 30

pointers: deque

Idea

1 1 2 3 5 8 13 21

Python (collections.deque)
from collections import deque

def FIBONACCI(n):

F = deque()

F.append(0)

F.append(1)

for i in range(2,n+1):

F.append(F[n-1]+F[n-2])

return F[n]

print FIBONACCI(8)

24 / 30

pointers: trees

Idea
Store max key and max value of each

subtree to the nodes

8:21

4:3

2:1

1:1 2:1

4:3

3:2 4:3

8:21

6:8

5:5 6:8

8:21

7:13 8:21

F [?] = 8

3 < 8

8 ≥ 8

5 < 8

F [6] = 8

Python
I No built in data type (several

external libraries exist)

I For many purposes hash-based

dictionary type dict is enough:

I Stores (key, value) pairs
so that value associated
with a key can be
retrieved efficiently
(average constant time)

I Does not support retrieval
by value

fib = {0:0, 1:1, 2:1, 3:2, 4:3,

5:5, 6:8, 7:13, 8:21}

print fib[8]

25 / 30

Large(r) data sets

I For mutable strings, use e.g.
I array.array(’c’, ’Hello’)
I bytearray(’Hello’)

I list uses a lot of memory (∼ 16 bytes per int)
I For homogeneous data, use e.g.

I array.array(’l’, [1,2,3,4])
I numpy.array([1,2,3,4])

26 / 30

Helpful links

I http://openbookproject.net/thinkcs/python/english2e/

(Programming tutorial for those who have no programming
experience)

I http://docs.python.org/tutorial/

I http://docs.python.org/library/

I http://wiki.python.org/moin/BeginnersGuide/

I http://wiki.python.org/moin/TimeComplexity/

I http://docs.scipy.org/doc/ (NumPy documentation)

27 / 30

http://openbookproject.net/thinkcs/python/english2e/
http://docs.python.org/tutorial/
http://docs.python.org/library/
http://wiki.python.org/moin/BeginnersGuide/
http://wiki.python.org/moin/TimeComplexity/
http://docs.scipy.org/doc/

Outline

Crash Course in Python

Study Group Assignments

28 / 30

Group 1 (students with biology background)

I One of the fundamental and most deeply studied algorithmic
problems is sorting. Before coming to the study group familiarize
yourself with the problem (e.g. using Wikipedia) and be ready to
explain the idea of couple of well-known sorting algorithms like
insertion sort, quicksort, merge sort, and radix sort.

I At study group, try to understand the running time O()-notion of
different sorting algorithms:

I What happens if you are sorting a set of DNA sequences into
lexicographic order instead of integers?

I What if the set of DNA sequences consists of all suffixes of one DNA
sequence?

29 / 30

Group 2 (students with CS background)

I Study the slides “molecular biology primer” (found on course web
site) before coming to the study group.

I At study group, be ready to explain the material just using the
“molecular biology cheat sheet”.

30 / 30

	Crash Course in Python
	Study Group Assignments

