| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 0000000    | 00000000         |
|                |            |                  |

## On the Complexity of Minimum Path Cover with

Subpath Constraints for Multi-Assembly

Romeo Rizzi<sup>1,\*</sup>, <u>Alexandru I. Tomescu<sup>2,\*</sup></u>, Veli Mäkinen<sup>2</sup>

<sup>1</sup>Department of Computer Science, University of Verona, Italy <sup>2</sup>Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Finland \* Equal contribution

> RECOMB-Seq 2014 31 March 2014



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 0000000    | 00000000         |
|                |            |                  |



NATIONAL GEOGRAPHIC <sup>6</sup> 2006 National Geographic Society. All rights reserved.

Photograph by Emory Kristoff



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| ●00000000      | 0000000    | 00000000         |
|                |            |                  |

## MULTI-ASSEMBLY

Assembly of fragments from different, but related, sequences

- ► transcriptomics (RNA-Seq)
- ► viral quasi-species
- metagenomics

Assumptions:

existing reference (genome-guided multi-assembly)

X no existing annotation (annotation-free)



| Multi-assembly Long | ng reads | Paired-end reads |
|---------------------|----------|------------------|
| 0●0000000 000       | 000000   | 00000000         |

## OVERLAP AND SPLICING GRAPHS

Overlap graphs:

- ▶ reads  $\equiv$  nodes
- overlaps  $\equiv$  arcs
- ► + coverage information

Splicing graphs:

- exons  $\equiv$  nodes
- ► reads overlapping two exons ≡ arcs
- ► + coverage information

Existing reference  $\implies$  graphs are acyclic (DAGs)



| Multi-assembly |  |
|----------------|--|
| 0000000000     |  |

What is the minimum number of paths required to cover all nodes of a DAG?

- ▶ RNA-Seq: Cufflinks, CLASS, BRANCH
- Viral quasi-species: ShoRAH



| Multi-assembly |  |
|----------------|--|
| 000000000      |  |

What is the minimum number of paths required to cover all nodes of a DAG?

- ▶ RNA-Seq: Cufflinks, CLASS, BRANCH
- ► Viral quasi-species: ShoRAH



What is the minimum number of paths required to cover all nodes of a DAG?

- ► RNA-Seq: Cufflinks, CLASS, BRANCH
- Viral quasi-species: ShoRAH



In general it is NP-complete (one path iff *G* has a Hamiltonian path)

But it is solvable in polynomial-time on DAGs:

- ► Dilworth's theorem 1950 + Fulkerson's constructive proof 1956
- ▶ by a maximum matching algorithm, solvable in time  $O(t(G)\sqrt{n})$
- the weighted version can be solved in time  $O(n^2 \log n + t(G)n)$

where t(G) is the number of arcs in the transitive closure of *G*.



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 000000000      | 0000000    | 00000000         |
|                |            |                  |

## MIN-COST MPC VIA MIN-COST FLOWS

- ▶ Unweighted case: MPC via Min-Flows, [Pijls, Potharst, 2013]
- ► Weighted case: MPC via Min-cost Flows

Assuming we know the minimum size of a path cover:



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 000000000      | 0000000    | 0000000          |
|                |            |                  |

## MIN-COST MPC VIA MIN-COST FLOWS

- ▶ Unweighted case: MPC via Min-Flows, [Pijls, Potharst, 2013]
- ► Weighted case: MPC via Min-cost Flows

Assuming we know the minimum size of a path cover:



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 000000000      | 0000000    | 0000000          |
|                |            |                  |

## MIN-COST MPC VIA MIN-COST FLOWS

- ▶ Unweighted case: MPC via Min-Flows, [Pijls, Potharst, 2013]
- ► Weighted case: MPC via Min-cost Flows

Assuming we know the minimum size of a path cover:



## MPC VIA MIN-COST FLOWS

This flow problem can be reduced to a Min-cost circulation problem

- ▶ we add an arc from *t* to *s* with 'large' cost
- ▶ we have only demands (= 1)
- ► can be solved in time  $O(n^2 \log n + nm)$  by [*Gabow and Tarjan*, 1991]

This is always better than  $O(n^2 \log n + nt(G))$ , because  $m \le t(G) \le n^2$ 

► as soon as there is a path of length O(n), we have  $t(G) = O(n^2)$ 



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 0000000    | 00000000         |



| Multi-assembly I                        | Long reads | Paired-end reads |
|-----------------------------------------|------------|------------------|
| 00000000 000000000000000000000000000000 | 000000     | 00000000         |



#### INPUT: A DAG G and

- 1. A superset *S* of the sources of *G*, and a superset *T* of the sinks of *G*
- 2. A cost w(e) for each  $e \in E(G)$
- 3. A family  $\mathcal{P}^{in} = \{P_1^{in}, \dots, P_t^{in}\}$  of directed paths in *G*

**TASK:** Find a minimum number *k* of directed paths  $P_1^{sol}, \ldots, P_k^{sol}$  in *G* such that

- 1. Every node in V(G) occurs in some  $P_i^{sol}$
- 2. Every path  $P^{in} \in \mathcal{P}^{in}$  is entirely contained in some  $P_i^{sol}$
- 3. Every path  $P_i^{sol}$  starts in a node of *S* and ends in a node of *T*
- 4.  $\sum_{i=1}^{k} \sum_{\substack{\text{edge } e \in P_i^{sol} \\ \text{satisfying 1.-3.}}} w(e) \text{ is minimum among all tuples of } k \text{ paths}$
- introduced by [Bao, Jiang, Girke, 2013, BRANCH], but the case of overlapping constraints not solved

| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 000000     | 00000000         |



Subpath constraints as arc demands:







| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 00000000   | 00000000         |

**Problem 1:** a constraint *P* included in another constraint *Q* 



- Remove P
- Can be implemented in time O(N) with a suffix tree for large alphabets, [Farach, 1997]
  - ► *N* = sum of lengths of Subpath Constraints

| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 00000000   | 00000000         |

#### Problem 2: Suffix-prefix overlaps



- ► Iteratively merge constraints with longest suffix-prefix overlap
- ► All suffix-prefix overlaps can be found in optimal time O(N + overlaps) by [Gusfield, Landau and Schieber, 1992]
- Our iterative merging also takes O(N + overlaps) time



| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 0000000    | 00000000         |

Pre-processing phase

- ►  $O(N + c^2)$ 
  - overlaps  $\leq c^2$

The flow problem can be reduced to a Min-cost circulation problem

- we add an arc from *t* to *s* with 'large' cost
- O(n) nodes and O(m + c) arcs
- ► only demands (= 1)

Min-cost MPC with Subpath Constraints can be solved in time  $O(N + c^2 + n^2 \log n + n(m + c))$  by [*Gabow and Tarjan, 1991*]



## MPC WITH PAIRED SUBPATH CONSTRAINTS

#### INPUT: A DAG G and

1. A family  $\mathcal{P}^{in} = \{(P_{1,1}^{in}, P_{1,2}^{in}), \dots, (P_{t,1}^{in}, P_{t,2}^{in})\}$  of pairs of directed paths in *G* 

**TASK:** Find a minimum number *k* of directed paths  $P_1^{sol}, \ldots, P_k^{sol}$  in *G* such that

- 1. Every node in V(G) occurs in some  $P_i^{sol}$
- For every pair (P<sup>in</sup><sub>j,1</sub>, P<sup>in</sup><sub>j,2</sub>) ∈ P<sup>in</sup>, there exists P<sup>sol</sup><sub>i</sub> such that both P<sup>in</sup><sub>j,1</sub> and P<sup>in</sup><sub>j,2</sub> are entirely contained in P<sup>sol</sup><sub>i</sub>
- ▶ introduced by [Song and Florea, 2013, CLASS]
- we show that it is
  - ► NP-hard; not FPT when parametrized by *k*
  - FPT in the number of constraints and nodes that need to be covered.
- solved in parallel by [Beerenwinkel, Beretta, Bonizzoni, Dondi and Pirola, 2014]









| Multi-assembly | Long reads | Paired-end reads |
|----------------|------------|------------------|
| 00000000       | 0000000    | 000000000        |

## CONCLUSIONS

Min-cost Minimum Path Cover

 $O(n^2 \log n + nm)$ 

► Min-cost Minimum Path Cover with Subpath Constraints

 $O(N + c^2 + n^2 \log n + n(m+c))$ 

- ► *c* = number of Subpath Constraints
- ► *N* = sum of lengths of Subpath Constraints
- ► Minimum Path Cover with Pairs of Subpaths Constraints

NP-hard, but FPT in the total number of constraints

- ► Future work: a better integration of observed coverages
- ► Implementation for RNA-Seq reads under way



## ACKNOWLEDGEMENTS

Partial support by

- Academy of Finland Centre of Excellence in Cancer Genomics Research (grant 250345)
- ► Finnish Cultural Foundation



Romeo Rizzi



Veli Mäkinen

#### Thanks to

 Anna Kuosmanen and Ahmed Sobih for preliminary implementation and experiments



| Multi-assembly Long | g reads | Paired-end reads |
|---------------------|---------|------------------|
| 00000000 000        | 000000  | 0000000          |



## Thank you!

## PICTORIAL PROOF OF STEP 2.

#### Lemma

Step 2. does not increase the cardinality of the solution path cover.



## NP-COMPLETENESS OF PROBLEM MPC-PSC



#### THEOREM

Problem MPC-PSC is NP-complete.

► A graph G = ({v<sub>1</sub>,...,v<sub>n</sub>}, {e<sub>1</sub>,...,e<sub>m</sub>}) has chromatic number 3 iff the DAG above admits a solution with 3 paths.

#### COROLLARY

For no  $\varepsilon > 0$  there exists a  $(\frac{4}{3} - \varepsilon)$ -approximation algorithm for Problem MPC-PSC unless P=NP. Moreover, the problem is not FPT when parameterized on OPT (the minimum number of paths in a solution).

# PROBLEM MPC-PSC IS FPT IN THE TOTAL NUMBER OF CONSTRAINTS

#### Lemma

Let *C* be a set of constraints on a DAG. There exists a directed path *P* in *G* which satisfies all constraints in *C* iff any two constraints in *C* are compatible.

#### THEOREM

Given an instance for Problem MPC-PSC, we can decide in polynomial time if OPT = 2, and if so, find the two solution paths. Moreover, Problem MPC-PSC is fixed-parameter tractable (FPT) in the total number C of input constraints.

- construct the 'in-compatibility' graph; this is bipartite iff OPT = 2
- partition the set of constraints in all possible ways and check that all constraints in every class are pairwise compatible