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operational repairing

multiple errors are possible in this period

I Essential for Critical Systems
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I Failsafe: Safety
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I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs
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Getting Results with Analytic Methods: Theory

I Model Distributed System as Markov Chain

P_1

P_2 P_3

=>

I Suffers from state space explosion

I Solution: Partition state space

I Problem: Abstraction hinders accuracy of results derived
tremendously
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I Not even close to reality... (cf. [Dhama et al., 2006])

I Size of applicable topologies very limited

I Advantage: results are proven...
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I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!
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−module(math).
−export([fac/1]).

fac(N) when N > 0 −> N ∗ fac(N−1);
fac(0) −> 1.

”
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−module(pingpong).
−export([start/0, ping/2, pong/0]).

ping(0, Pong PID) −>
Pong PID ! finished,
io:format(”ping finished ˜n”, []);

ping(N, Pong PID) −>
Pong PID ! {ping, self()},
receive

pong −>
io:format(”Ping received pong˜n”, [])

end,
ping(N − 1, Pong PID).

”
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pong() −>
receive

finished −>
io:format(”Pong finished˜n”, []);

{ping, Ping PID} −>
io:format(”Pong received ping˜n”, []),
Ping PID ! pong,
pong()

end.

start() −>
Pong PID = spawn(pingpong, pong, []),
spawn(pingpong, ping, [3, Pong PID]).

”
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Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided

I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend
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Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)
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Simulation Framework 4/5

server

client

fault_injector

client_algorithm

client_algorithm_bfs

fault_injector_bfs

fault_injector_dfs

fault_injector_le

fault_injector_mutex

client_algorithm_dfs

client_algorithm_le

client_algorithm_mutex

matrix_init

matrix_init_bfs

matrix_init_dfs

matrix_init_le

matrix_init_mutex

server:start().

client:start().

fault_injector:start().
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Accuracy 1/2
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This figure exemplifies availability for first 20, 000 steps of an
eight-processor system. The desired accuracy is reached if
maximum the deviation within last n steps is lower than a certain
threshold. The Results presented in the following feature about
1, 000, 000 steps per system node.
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Accuracy 2/2
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Strictness of accuracy guards is crucial for reliability of results!
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Test Case: All Possible 4-node Graphs

1

2

3

4

5

6
7

8

9

10

11

We chose depth first search (DFS) and breadth first search (BFS)
algorithms for comparison with the analytic approach, executed on
all possible 4-node graphs.
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Conclusions

Derivation of fault tolerance measures by simulation

I reason: analytic method is insufficient

I method: simulation of self-stabilizing distributed algorithms

I features: modular design, scalability, performance, reliability
of results
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