
Motivation
Theory
Erlang

Simulation
Results

Conclusion

Using Erlang for Distributed Simulation for the
Derivation of Fault Tolerance Measures

Nils Müllner

August 19, 2008

1 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Outline

I Motivation

I Theory

I Erlang

I Simulation

I Conclusion

2 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Motivation

I Why Fault Tolerance?

I Why Simulation?

I Why Erlang?

3 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Motivation

I Why Fault Tolerance?

I Why Simulation?

I Why Erlang?

3 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Motivation

I Why Fault Tolerance?

I Why Simulation?

I Why Erlang?

3 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Fault Tolerance Measures

I Reliability, Availability, Safety, Trustworthiness

MTBF

MTTRMTTF

Fault

operational repairing

multiple errors are possible in this period

I Essential for Critical Systems
I Masking, Nonmasking and Failsafe

I Masking: Safety and Liveness
I Nonmasking: Liveness
I Failsafe: Safety

4 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Fault Tolerance Measures

I Reliability, Availability, Safety, Trustworthiness

MTBF

MTTRMTTF

Fault

operational repairing

multiple errors are possible in this period

I Essential for Critical Systems

I Masking, Nonmasking and Failsafe

I Masking: Safety and Liveness
I Nonmasking: Liveness
I Failsafe: Safety

4 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Fault Tolerance Measures

I Reliability, Availability, Safety, Trustworthiness

MTBF

MTTRMTTF

Fault

operational repairing

multiple errors are possible in this period

I Essential for Critical Systems
I Masking, Nonmasking and Failsafe

I Masking: Safety and Liveness
I Nonmasking: Liveness
I Failsafe: Safety

4 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Fault Tolerance Measures

I Reliability, Availability, Safety, Trustworthiness

MTBF

MTTRMTTF

Fault

operational repairing

multiple errors are possible in this period

I Essential for Critical Systems
I Masking, Nonmasking and Failsafe

I Masking: Safety and Liveness
I Nonmasking: Liveness
I Failsafe: Safety

4 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation

I Easy and fast to implement

I More accurate than analysis

I Extremely scalable

I Suitable for a large class of problems

I BUT: Requires (many) resources

5 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation

I Easy and fast to implement

I More accurate than analysis

I Extremely scalable

I Suitable for a large class of problems

I BUT: Requires (many) resources

5 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation

I Easy and fast to implement

I More accurate than analysis

I Extremely scalable

I Suitable for a large class of problems

I BUT: Requires (many) resources

5 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation

I Easy and fast to implement

I More accurate than analysis

I Extremely scalable

I Suitable for a large class of problems

I BUT: Requires (many) resources

5 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation

I Easy and fast to implement

I More accurate than analysis

I Extremely scalable

I Suitable for a large class of problems

I BUT: Requires (many) resources

5 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang

I Distributed

I Concurrent

I Functional

I λ-calculus [Barendregt and Barendsen, 2000]

I pure (no side-effects, lazy evaluation) and eager

6 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang

I Distributed

I Concurrent

I Functional

I λ-calculus [Barendregt and Barendsen, 2000]

I pure (no side-effects, lazy evaluation) and eager

6 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang

I Distributed

I Concurrent

I Functional

I λ-calculus [Barendregt and Barendsen, 2000]

I pure (no side-effects, lazy evaluation) and eager

6 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang

I Distributed

I Concurrent

I Functional

I λ-calculus [Barendregt and Barendsen, 2000]

I pure (no side-effects, lazy evaluation) and eager

6 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang

I Distributed

I Concurrent

I Functional

I λ-calculus [Barendregt and Barendsen, 2000]

I pure (no side-effects, lazy evaluation) and eager

6 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Functional Languages

I Lisp, Haskell, Scheme, Erlang

I Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

I Functions are algorihms

I Algorithms can be splitted into subalgorithms

I Parallelization by modularizing programs

I Easy to verify

7 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

So, what do we want?

I Simulation with

I a Functional Language to

I derive Fault Tolerance Measures

8 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

So, what do we want?

I Simulation with

I a Functional Language to

I derive Fault Tolerance Measures

8 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

So, what do we want?

I Simulation with

I a Functional Language to

I derive Fault Tolerance Measures

8 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Getting Results with Analytic Methods: Theory

I Model Distributed System as Markov Chain

P_1

P_2 P_3

=>

I Suffers from state space explosion

I Solution: Partition state space

I Problem: Abstraction hinders accuracy of results derived
tremendously

9 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Getting Results with Analytic Methods: Theory

I Model Distributed System as Markov Chain

P_1

P_2 P_3

=>

I Suffers from state space explosion

I Solution: Partition state space

I Problem: Abstraction hinders accuracy of results derived
tremendously

9 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Getting Results with Analytic Methods: Theory

I Model Distributed System as Markov Chain

P_1

P_2 P_3

=>

I Suffers from state space explosion

I Solution: Partition state space

I Problem: Abstraction hinders accuracy of results derived
tremendously

9 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Getting Results with Analytic Methods: Theory

I Model Distributed System as Markov Chain

P_1

P_2 P_3

=>

I Suffers from state space explosion

I Solution: Partition state space

I Problem: Abstraction hinders accuracy of results derived
tremendously

9 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Theory

I Only conservative estimations

I Not even close to reality... (cf. [Dhama et al., 2006])

I Size of applicable topologies very limited

I Advantage: results are proven...

10 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Theory

I Only conservative estimations

I Not even close to reality... (cf. [Dhama et al., 2006])

I Size of applicable topologies very limited

I Advantage: results are proven...

10 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Theory

I Only conservative estimations

I Not even close to reality... (cf. [Dhama et al., 2006])

I Size of applicable topologies very limited

I Advantage: results are proven...

10 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Theory

I Only conservative estimations

I Not even close to reality... (cf. [Dhama et al., 2006])

I Size of applicable topologies very limited

I Advantage: results are proven...

10 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 1/5

I Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

I A language for programming distributed fault-tolerant soft
real-time non-stop applications.

I Purely Functional Language
I Interpreted or compiled
I Hot Code Plugging

11 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 1/5

I Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

I A language for programming distributed fault-tolerant soft
real-time non-stop applications.

I Purely Functional Language
I Interpreted or compiled
I Hot Code Plugging

11 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 1/5

I Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

I A language for programming distributed fault-tolerant soft
real-time non-stop applications.

I Purely Functional Language

I Interpreted or compiled
I Hot Code Plugging

11 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 1/5

I Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

I A language for programming distributed fault-tolerant soft
real-time non-stop applications.

I Purely Functional Language
I Interpreted or compiled

I Hot Code Plugging

11 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 1/5

I Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

I A language for programming distributed fault-tolerant soft
real-time non-stop applications.

I Purely Functional Language
I Interpreted or compiled
I Hot Code Plugging

11 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Erlang 2/5

I Focuses on parallelism and fault tolerance

I Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

I employs OpenSSL (χ2-test)

I No variables => instantiated constants

I No loops => recursive function calls

I No variable declarations => duck types

I Prolog Style Syntax, but not a logic language!

12 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

−module(math).
−export([fac/1]).

fac(N) when N > 0 −> N ∗ fac(N−1);
fac(0) −> 1.

”

13 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

−module(pingpong).
−export([start/0, ping/2, pong/0]).

ping(0, Pong PID) −>
Pong PID ! finished,
io:format(”ping finished ˜n”, []);

ping(N, Pong PID) −>
Pong PID ! {ping, self()},
receive

pong −>
io:format(”Ping received pong˜n”, [])

end,
ping(N − 1, Pong PID).

”

14 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

pong() −>
receive

finished −>
io:format(”Pong finished˜n”, []);

{ping, Ping PID} −>
io:format(”Pong received ping˜n”, []),
Ping PID ! pong,
pong()

end.

start() −>
Pong PID = spawn(pingpong, pong, []),
spawn(pingpong, ping, [3, Pong PID]).

”

15 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided

I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided

I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided

I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided
I Breadth First Search

I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided
I Breadth First Search
I Depth First Search

I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided
I Breadth First Search
I Depth First Search
I Leader Election

I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided
I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 1/5

I monitoring facility (prints every nth step)

I runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

I four distributed self-stabilizing algorithms provided
I Breadth First Search
I Depth First Search
I Leader Election
I Mutual Exclusion

I easy to extend

16 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 2/5

I exact fault environments (specify distinct values for each
vertex and edge)

I dynamic fault environments

I dynamic execution semantics possible (number of nodes
executing per step in parallel)

I external fault injection and monitoring facilities

I event logging (if needed)

I choice of schedulers (three provided)

I Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 3/5

18 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Simulation Framework 4/5

server

client

fault_injector

client_algorithm

client_algorithm_bfs

fault_injector_bfs

fault_injector_dfs

fault_injector_le

fault_injector_mutex

client_algorithm_dfs

client_algorithm_le

client_algorithm_mutex

matrix_init

matrix_init_bfs

matrix_init_dfs

matrix_init_le

matrix_init_mutex

server:start().

client:start().

fault_injector:start().

19 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Accuracy 1/2

41 1558 3075 4592 6109 7626 9143 10660121771369415211167281824519762
0.00

0.10

0.20

0.30

0.40

0.50

0.60

# of steps

A
v
a
il
a
b

il
it

y

20,00010,0000

This figure exemplifies availability for first 20, 000 steps of an
eight-processor system. The desired accuracy is reached if
maximum the deviation within last n steps is lower than a certain
threshold. The Results presented in the following feature about
1, 000, 000 steps per system node.

20 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Accuracy 2/2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17
0

10

20

30

40

50

60

70

80

90

100

Insufficiently Strict 
Accuracy Guards
Sufficiently Strict Ac-
curacy Guards

Error-Probability for each receiving node and each edge

A
v
a
ila

b
ili

ty

Strictness of accuracy guards is crucial for reliability of results!

21 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Test Case: All Possible 4-node Graphs

1

2

3

4

5

6
7

8

9

10

11

We chose depth first search (DFS) and breadth first search (BFS)
algorithms for comparison with the analytic approach, executed on
all possible 4-node graphs.

22 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

10

20

30

40

50

60

70

80

90

100

Breadth First Search - Simulation

Topology 1
Topology 2
Topology 3
Topology 4
Topology 5
Topology 6
Topology 7
Topology 8
Topology 9
Topology 10
Topology 11

Global Node Error Probabilty

Li
m

it
in

g
 A

v
a
ila

b
ili

ty

23 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

10

20

30

40

50

60

70

80

90

100

Breadth First Search - Analysis

Topology 1
Topology 2
Topology 3
Topology 4
Topology 5
Topology 6
Topology 7
Topology 8
Topology 9
Topology 10
Topology 11

Global Node Error Probability

Li
m

it
in

g
 A

va
ila

b
ili

ty

24 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

10

20

30

40

50

60

70

80

90

100

Depth First Search - Simulation

Topology 1
Topology 2
Topology 3
Topology 4
Topology 5
Topology 6
Topology 7
Topology 8
Topology 9
Topology 10
Topology 11

Global Node Error Probability

L
im

it
in

g
 A

v
a
ila

b
ili

ty

25 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

10

20

30

40

50

60

70

80

90

100

Depth First Search - Analysis

Topology 1
Topology 2
Topology 3
Topology 4
Topology 5
Topology 6
Topology 7
Topology 8
Topology 9
Topology 10
Topology 11

Global Node Error Probability

L
im

it
in

g
 A

v
a
il
a
b

il
it

y

26 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation

I reason: analytic method is insufficient

I method: simulation of self-stabilizing distributed algorithms

I features: modular design, scalability, performance, reliability
of results

27 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation

I reason: analytic method is insufficient

I method: simulation of self-stabilizing distributed algorithms

I features: modular design, scalability, performance, reliability
of results

27 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation

I reason: analytic method is insufficient

I method: simulation of self-stabilizing distributed algorithms

I features: modular design, scalability, performance, reliability
of results

27 / 28



Motivation
Theory
Erlang

Simulation
Results

Conclusion

Barendregt, H. and Barendsen, E. (2000).

Introduction to lambda calculus.
In Aspenäs Workshop on Implementation of Functional Languages, Göteborg. Programming Methodology
Group, University of Göteborg and Chalmers University of Technology.

Dhama, A., Theel, O., and Warns, T. (2006).

Reliability and Availability Analysis of Self-Stabilizing Systems.
In 8th International Symposium on Stabilization, Safety, and Security of Distributed Systems, page 17.
Springer.

Dolev, S. (2000).

Self-Stabilization.
MIT Press.

Müllner, N., Dhama, A., and Theel, O. (2008).

Derivation of Fault Tolerance Measures of Self-Stabilizing Algorithms by Simulation.
In ANSS ’08: Proceedings of the 41st annual symposium on Simulation, Ottawa, Ontario, Canada. IEEE
Computer Society Press.

Schneider, M. (1993).

Self-stabilization.
ACM Comput. Surv., 25(1):45–67.

Trivedi, K. S. (1982).

Probability and Statistics with Reliability, Queuing and Computer Science Applications.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

28 / 28


	Motivation
	Theory
	Erlang
	Simulation
	Results
	Conclusion
	

