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Fault Tolerance Measures

> Reliability, Availability, Safety, Trustworthiness
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» Essential for Critical Systems

Luluple errors are possible in this period

» Masking, Nonmasking and Failsafe
» Masking: Safety and Liveness

» Nonmasking: Liveness
» Failsafe: Safety
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Suitable for a large class of problems

v

BUT: Requires (many) resources
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Erlang

Distributed
Concurrent
Functional
A-calculus [Barendregt and Barendsen, 2000]

vV v v v Y

pure (no side-effects, lazy evaluation) and eager
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Functional Languages

» Lisp, Haskell, Scheme, Erlang
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Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

Functions are algorihms
Algorithms can be splitted into subalgorithms
Parallelization by modularizing programs

Easy to verify
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So, what do we want?

> Simulation with
» a Functional Language to

» derive Fault Tolerance Measures
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Getting Results with Analytic Methods: Theory

» Model Distributed System as Markov Chain

» Suffers from state space explosion

» Solution: Partition state space

» Problem: Abstraction hinders accuracy of results derived
tremendously
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Theory

» Only conservative estimations
» Not even close to reality... (cf. [Dhama et al., 2006])
» Size of applicable topologies very limited

» Advantage: results are proven...
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Erlang

Erlang 1/5

v

Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

A language for programming distributed fault-tolerant soft
real-time non-stop applications.

Purely Functional Language

Interpreted or compiled

Hot Code Plugging

v

vyvyy
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Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance
» Highly reliable (Switch AXD301 is 99.9999999% reliable,
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31 ms/yr downtime)

employs OpenSSL (?-test)

No variables => instantiated constants
No loops => recursive function calls
No variable declarations => duck types

Prolog Style Syntax, but not a logic language!
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Erlang

—module(math).
—export([fac/1]).

fac(N) when N > 0 —> N * fac(N—1);
fac(0) —> 1.
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Erlang

—module(pingpong).
—export([start/0, ping/2, pong/0]).

ping(0, Pong_PID) —>
Pong_PID ! finished,
io:format (" ping finished “n”, []);

ping(N, Pong_PID) —>
Pong_PID ! {ping, self()},
receive
pong —>
io:format(" Ping received pong™n", [])
end,
ping(N — 1, Pong_PID).
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Erlang

pong() —>
receive
finished —>
io:format (" Pong finished™n”, []);
{ping, Ping_PID} —>
io:format (" Pong received ping™n", []),
Ping_PID ! pong,
pong()
end.
start() —>

Pong_PID = spawn(pingpong, pong, []),
spawn(pingpong, ping, [3, Pong_PID]).
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» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

» Breadth First Search
» Depth First Search
» Leader Election

» Mutual Exclusion

> easy to extend

16 /28
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Simulation

Simulation Framework 2/5

exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

v

vV v v Y

dynamic execution semantics possible (number of nodes
executing per step in parallel)

external fault injection and monitoring facilities
event logging (if needed)
choice of schedulers (three provided)

Load balancing (each client a lightweight process, can be
mapped to any processor/computer)
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Simulation

Simulation Framework 3/5

7> server:start().

[EEy ] [1]bfs

[EEy e [2]dfs

[EEy ] [3]1le

(L xS [4]mutex

%%%%% Please enter the appropriate number [n.]1>[

B
oo Sisspa B
o B
TR I B
oo B
oo B
oo Welcome to the Simulator for B
LEEy ] Self-Stabilizing Distributed Algorithms feased
oo B
oo SERVER B
B
amtns INITIALIZATION-PHASE 1: CHOOSE ALGORITHH ey
true
%%%%% The following algorithms are available: BRBBY
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Simulation

Simulation Framework 4/5
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Results

Accuracy 1/2
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This figure exemplifies availability for first 20,000 steps of an
eight-processor system. The desired accuracy is reached if
maximum the deviation within last n steps is lower than a certain
threshold. The Results presented in the following feature about
1,000, 000 steps per system node.
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Results

Accuracy 2/2
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Strictness of accuracy guards is crucial for reliability of results!
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Test Case: All Possible 4-node Graphs
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We chose depth first search (DFS) and breadth first search (BFS)

algorithms for comparison with the analytic approach, executed on
all possible 4-node graphs.
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Results

Breadth First Search - Simulation
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Results

Breadth First Search - Analysis
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Results

Depth First Search - Simulation
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Results

Depth First Search - Analysis
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Conclusions

Derivation of fault tolerance measures by simulation
> reason: analytic method is insufficient
» method: simulation of self-stabilizing distributed algorithms

» features: modular design, scalability, performance, reliability
of results
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