
Improving MCS Enumeration via Caching?

Alessandro Previti1, Carlos Mencı́a2, Matti Järvisalo1, and Joao Marques-Silva3

1 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
alessandro.previti@helsinki.fi

2 Department of Computer Science, University of Oviedo, Gijón, Spain
3 LASIGE, Faculty of Science, University of Lisbon, Lisbon, Portugal

Abstract. Enumeration of minimal correction sets (MCSes) of conjunctive nor-
mal form formulas is a central and highly intractable problem in infeasibility
analysis of constraint systems. Often complete enumeration of MCSes is impos-
sible due to both high computational cost and worst-case exponential number of
MCSes. In such cases partial enumeration is sought for, finding applications in
various domains, including axiom pinpointing in description logics among oth-
ers. In this work we propose caching as a means of further improving the practi-
cal efficiency of current MCS enumeration approaches, and show the potential of
caching via an empirical evaluation.

1 Introduction

Minimal correction sets (MCSes) of an over-constrained system are subset-minimal
sets of constraints whose removal restores the consistency of the system [6]. In terms of
unsatisfiable conjunctive normal form (CNF) propositional formulas, the focus of this
work, MCSes are hence minimal sets of clauses such that, once removed, the rest of the
formula is satisfiable. Due to the generality of the notion, MCSes find applications in
various domains where understanding infeasibility is a central problem, ranging from
minimal model computation and model-based diagnosis to interactive constraint satis-
faction and configuration [17], as well as ontology debugging and axiom pinpointing in
description logics [1].

On a fundamental level, MCSes are closely related to other fundamental notions in
infeasibility analysis. These include maximal satisfiable subsets (MSSes), which repre-
sent the complement notion of MCSes (sometimes referred to as co-MSSes [11]), and
minimally unsatisfiable subsets (MUSes), with the well-known minimal hitting set du-
ality providing a tight connection between MCSes and MUSes [4, 6, 26]. Furthermore,
MCSes are strongly related to maximum satisfiability (MaxSAT), the clauses satisfied
in an optimal MaxSAT solution being the residual formula after removing a smallest
(minimum-weight) MCS over the soft clauses. Not surprisingly, MCS extraction sur-
passes in terms of computational complexity the task of satisfiability checking, deciding
whether a given subset of clauses of a CNF formula is an MCS being DP-complete [7].
? A.P. and M.J. were supported by Academy of Finland (grants 251170 COIN, 276412, and

284591) and the Research Funds of the University of Helsinki. C.M. was supported by
grant TIN2016-79190-R. J.M.S. was supported by FCT funding of LASIGE Research Unit,
ref. UID/CEC/00408/2013.

Despite this, and on the other hand motivated by the various applications and funda-
mental connections, several algorithms for extracting an MCS of a given CNF formula
have been recently proposed [3,11,17–20,22,24], iteratively using Boolean satisfiability
(SAT) solvers as the natural choice for the underlying practical NP oracle.

In this work we focus on the computationally more challenging task of MCS enu-
meration. Complete enumeration of MCSes is often impossible due to both high com-
putational cost and the worst-case exponential number of MCSes. In such cases partial
enumeration is sought for, which finds many application domains, including axiom pin-
pointing in description logics [1] among others.

Instead of proposing a new algorithm for MCS enumeration, we propose the use of
caching as a means of further improving the scalability of current state-of-the-art MCS
enumeration algorithms. Caching (or memoization) is of course a well-known general
concept, and has been successfully applied in speeding up procedures for other central
problems related to satisfiability. A prime example is the use of subformula caching in
the context of the #P-complete model counting problem [2, 5, 12, 13, 27, 30]. Similarly,
clause learning in CDCL SAT solvers [23, 28] can be viewed as a caching mechanism
where learned clauses summarize and prevent previously identified conflicts.

In more detail, we propose caching unsatisfiable cores met during search within
SAT-based MCS enumeration algorithms. Putting this idea into practice, we show that
core caching has clear potential in scaling up MCS enumeration, especially for those
instances whose extraction of a single MCS is not trivial. In terms of related work, to
the best of our knowledge the use of caching to scale up MCS enumeration has not been
previously proposed or studied. Partial MUS enumerators (e.g. [14, 31]) store MUSes
and MCSes in order to exploit hitting set duality and enumerate both. In contrast, we
use caching to avoid potentially hard calls to a SAT solver.

The rest of this paper is organized as follows. In Section 2 we overview neces-
sary preliminaries and notation used throughout, and in Section 3 provide an overview
of MCS extraction and enumeration algorithms. We propose caching as a means of
improving MCS enumeration in Section 4, and, before conclusions, present empirical
results on the effects of using this idea in practice in Section 5.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula
F over a set of Boolean variables X = {x1, ..., xn} is a conjunction of clauses (c1 ∧
... ∧ cm). A clause ci is a disjunction of literals (li,1 ∨ ... ∨ li,ki) and a literal l is either
a variable x or its negation ¬x. We refer to the set of literals appearing in F as L(F).
CNF formulas can be alternatively represented as sets of clauses, and clauses as sets of
literals. Unless explicitly specified, formulas and clauses are assumed to be represented
as sets.

A truth assignment, or interpretation, is a mapping µ : X → {0, 1}. If each of the
variables in X is assigned a truth value, µ is a complete assignment. Interpretations can
be also seen as conjunctions or sets of literals. Truth valuations are lifted to clauses
and formulas as follows: µ satisfies a clause c if it contains at least one of its literals,
whereas µ falsifies c if it contains the complements of all its literals. Given a formula

F , µ satisfies F (written µ |=F) if it satisfies all its clauses, in which case µ is a model
of F .

Given two formulas F and G, F entails G (written F |=G) if and only if each model
of F is also a model of G. A formula F is satisfiable (F 6|=⊥) if it has a model, and
otherwise unsatisfiable (F |=⊥). SAT is the NP-complete [8] decision problem of de-
termining the satisfiability of a given propositional formula.

The following definitions give central notions of subsets of an unsatisfiable formula
F in terms of (set-wise) minimal unsatisfiability and maximal satisfiability [15, 17].

Definition 1. M⊆ F is a minimally unsatisfiable subset (MUS) of F if and only ifM
is unsatisfiable and ∀c ∈M,M\ {c} is satisfiable.

Definition 2. C ⊆ F is a minimal correction subset (MCS) if and only if F \ C is
satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

Definition 3. S ⊆ F is a maximal satisfiable subset (MSS) if and only if S is satisfiable
and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

Note that an MSS is the set-complement of an MCS. MUSes and MCSes are closely
related by the well-known hitting set duality [4, 6, 26, 29]: Every MCS (MUS) is an
irreducible hitting set of all MUSes (MCSes) of the formula. In the worst case, there
can be an exponential number of MUSes and MCSes [15, 25]. Besides, MCSes are
related to the maximum satisfiability (MaxSAT) problem, which consists in finding an
assignment satisfying as many clauses as possible; a smallest MCS (i.e., largest MSS)
is the set of clauses left unsatisfied by some optimal MaxSAT solution.

Given the practical significance of handling soft constraints [21], we consider that
formulas may be partitioned into sets of hard and soft clauses, i.e., F = FH ∪FS . Hard
clauses must be satisfied, while soft clauses can be relaxed if necessary. Thus, an MCS
will be a subset of FS .

The following simple proposition will be useful in the remainder of this paper.

Proposition 1. LetM be an unsatisfiable formula. Then, for anyM′ ⊇ M we have
that alsoM′ is unsatisfiable.

3 MCS Extraction and Enumeration

In this section we overview the state-of-the-art MCS enumeration algorithms. These
algorithms work on a formula F = FH ∪ FS partitioned into hard and soft clauses,
FH and FS , respectively. The hard clauses are added as such to a SAT solver. Each soft
clause ci is extended, or reified, with a fresh selector (or assumption) variable si, i.e. soft
clause ci results in the clause (¬si ∨ ci), before adding them to the SAT solver. The use
of selector variables is a standard technique used to add and remove clauses, enabling
incremental SAT solving. Selector variables are set as assumptions at the beginning of
each call to the SAT solver in order to activate (add) or deactivate (remove) a clause. In
particular, if si is set to 1, then the associated clause is activated. If si is set to 0, then ci
is deactivated. The addition of the selector variables makes F satisfiable (provided that

Algorithm 1: Basic linear search
1 Function BLS(F)
2 M← ∅
3 (S,U)← InitialAssignment(F)
4 foreach c ∈ U do
5 〈st, µ, C〉 ← SAT(S ∪ {c})
6 if st then S ← S ∪ {c}
7 elseM←M∪ {c}
8 returnM // MCS of F

FH is satisfiable). When all the selector variables si are set to 1, the result is the original
formula F . MCS algorithms use the selector variables as assumptions for selecting
subsets of FS over which to check satisfiability together with the hard clauses. We will
refer to the subset of soft clauses of FS identified by a set of selector variables together
with the hard clauses as the induced formula. In presenting the algorithms, we will
avoid referring explicitly to selector variables; rather, we identify a formula F with all
selector variables of the soft clauses in FS being set to 1.

State-of-the-art MCS extraction algorithms rely on making a sequence of calls to a
SAT solver that is used as a witness NP oracle. The solver is queried a number of times
on subformulas of the unsatisfiable input formula F . A SAT solver call is represented
on line 5 by 〈st, µ, C〉 ← SAT(F), where st is a Boolean value indicating whether the
formula is satisfiable or not. If the formula is satisfiable, the SAT solver returns a model
µ. Otherwise it returns an unsatisfiable core C over the soft clauses.

We overview in more detail a simple example of such algorithms: the basic lin-
ear search (BLS) approach, depicted in Algorithm 1. This algorithm maintains a par-
tition of F in two disjoint sets during the computation of an MCS. The set S rep-
resents a satisfiable subformula of F , i.e., the MSS under construction. The set U is
formed by the clauses that still need to be checked. The initial assignment used to
split F is a model µ of FH . All the clauses in F satisfied by µ are put in S, while
the falsified clauses become part of U . These operations are enclosed inside the func-
tion InitialAssignment(F) on line 3. Then, iteratively until all the clauses in U
have been checked, the algorithm picks a clause c ∈ U and checks the satisfiability of
S ∪{c}. If it is satisfiable, c is added to S. Otherwise, c is known to belong to the MCS
under construction and is added to M. Upon termination, S represents an MSS and
M = F \ S represents an MCS of F .

In linear search, the number of SAT solver calls necessary is linear in terms of
the number of soft clauses in the input formula. Different alternatives and optimiza-
tion techniques have been proposed in recent years, leading to substantial improve-
ments, including FastDiag [10], dichotomic search [25], clause D (CLD) [17], relax-
ation search [3], and the CMP algorithm [11]. In addition, algorithms such as the literal-
based extractor (LBX) [20] represent the current state-of-the-art for extracting a single
MCS. Recently, algorithms such as LOPZ, UCD and UBS, which also target the ex-
traction of a single MCS, have been proposed [18], requiring a sublinear number of
SAT solver calls on the number of clauses. Optimization techniques include exploiting
satisfying assignments, backbone literals, and disjoint unsatisfiable cores [17], among

others, and are integrated into MCS extraction algorithms for improving efficiency, giv-
ing rise to, e.g., enhanced linear search (ELS) [17].

MCS enumeration relies on iteratively extracting an MCS C ⊂ F and blocking it
by adding the hard clause

∨
l∈L(C) l to F . This way, no superset of C will subsequently

be considered during the enumeration. The process continues until FH becomes unsat-
isfiable, at which time all MCSes have been enumerated.

To the best of our knowledge, the current state-of-the-art in MCS enumeration is
represented by the algorithms implemented in the tool mcsls [17], specifically, ELS and
CLD. These algorithms have been shown to be complementary to each other [16].

4 Caching for MCS Enumeration

We will now introduce caching as a way to improve MCS enumeration. For some in-
tuition, when a formula has a large number of MCSes, many of the MCSes tend to
share many clauses. This suggests that similar satisfiability problems are solved in the
computation of several MCSes. Our proposal aims at making use of this observation by
storing information that could lead to avoiding potentially time-consuming calls to the
SAT solver on S ∪ {c}.

The idea is to keep a global database which is updated and queried by the MCS ex-
traction algorithm during the enumeration process. The only requirements for realizing
the database are the two operations store(C) and hasSubset(K), where C is an unsatis-
fiable core of F and K ⊆ F . The intent of the function hasSubset(K) is to check for a
given subsetK ofF whether an unsatisfiable core C ofF with C ⊆ K has already been
extracted. If this is the case, we know by Proposition 1 thatK is unsatisfiable. Naturally,
as the cache database queries should avoid the cost of calling a SAT solver on the actual
instance, the functions store(C) and hasSubset(K) need to be fast to compute.

Considering these requirements, as well as ease of implementing the cache and
queries to the cache, in this work we implement the database by means of a SAT solver,

Algorithm 2: Basic linear search with caching
1 Function BLS-CACHING(F)

Global: D
2 M← ∅ // MCS under construction
3 (S,U)← InitialAssignment(F)
4 foreach c ∈ U do
5 A ← {si|ci ∈ S ∪ {c}}
6 〈st, µ, C〉 ← SAT(D ∪A)
7 if not st then
8 M←M∪ {c}
9 continue

10 〈st, µ, C〉 ← SAT(S ∪ {c})
11 if not st then
12 D ← D ∪ {(

∨
ci∈C ¬σ(ci))}

13 M←M∪ {c}
14 else S ← S ∪ {c}
15 returnM // MCS of F

storing a formula referred to as D formula in Algorithm 2. Variables of this formula
are the selector variables of the original formula F , while clauses represent unsatisfi-
able cores of F . For an unsatisfiable core C of F the corresponding clause is given
by (

∨
ci∈C ¬σ(ci)), where σ(ci) is a function which for a given clause ci returns the

associated selector variable si. As an example, suppose that C = {c1, c2, c3} is an
unsatisfiable core of F . The corresponding clause added to D is (¬s1 ∨ ¬s2 ∨ ¬s3).
Notice that inD all literals are pure, since no positive literal is part of any clause. TheD
formula is in fact monotone. Consequently, checking the satisfiability of the D formula
under any assumptions can be done in polynomial time. From a theoretical point of
view, this clearly shows an advantage compared to calling a SAT solver on the formula
F .

Algorithm 2 shows the BLS algorithm extended with caching. The algorithm is
here presented for simplicity in terms of extracting a single (next) MCS. To avoid rep-
etition, we assume that the formula FH contains blocking clauses of all the previously
computed MCSes. As a consequence, any initial assignment computed at line 3 is guar-
anteed to split the formula in two parts S and U such that for any MCSM ⊆ U ,M is
not an already computed MCS.

Proposition 2. Let G be a formula and A = {si|ci ∈ G}. If D ∪A |=⊥, then G |=⊥.

Proof. Recall that each clause in D represents an unsatisfiable core. For D ∪A |=⊥ to
hold, there has to be a clause c ∈ D whose literals are all falsified. This can happen if
and only if we have c ⊆ A′, where A′ = {¬si|si ∈ A}. Since the formula induced by
c is unsatisfiable and c ⊆ A′, by Proposition 1 it follows that G is unsatisfiable. ut

Proposition 2 is applied on line 6 of Algorithm 2. In caseD∪A is unsatisfiable, the call
to the SAT solver on line 10 becomes unnecessary and we can immediately add c toM
and proceed with testing the next clause. Otherwise, we are forced to test the clause c on
the original formula (line 10). If S ∪ {c} is unsatisfiable, we add the unsatisfiable core
C to the formula D and c to the MCS under construction M. If instead the outcome
returned by the call is satisfiable, we add the clause to S, the MSS under construction.
When all clauses have been tested, the MCSM = F \ S is returned.

Example 1. Assume thatF = {c1, c2, c3, c4, c5} is an unsatisfiable formula withM1 =
{c1, c2, c3} and M2 = {c1, c4, c5} the only MUSes of F . An example run of Algo-
rithm 2 is shown in Table 1. First D is empty and a SAT call on the original formula
is made to identify c3 as part of the MCS under construction. The query returns UN-
SAT, c3 is added to the MCS under construction, and the unsatisfiable core {c1, c2, c3}
is added to D. For testing S ∪ {c5} = {c1, c4, c2, c5}, D ∪ A (represented in CNF as
(¬s1 ∨ ¬s2 ∨ ¬s3) ∧ s1 ∧ s4 ∧ s2 ∧ s5) is satisfiable, so another SAT call on F is
required. This adds the additional unsatisfiable core {c1, c4, c5} to D and c5 to M1,
which is now a complete MCS. Finally, when testing clauses c3 and c4 (for the next
MCS), we have that in both cases D ∪A is unsatisfiable and the two clauses are added
toM2. This example shows that while two SAT solver calls are needed for determining
the first MCS, for the second one it suffices to query the core database. �

Table 1: Example execution of Algorithm 2.

S ∪ {c} D Query M1

{c1, c4, c2} ∪ {c3} ∅ F : UNSAT {c3}
{c1, c4, c2} ∪ {c5} {c1, c2, c3} F : UNSAT {c3, c5}

S ∪ {c} D Query M2

{c1, c2, c5} ∪ {c3} {c1, c2, c3}, {c1, c4, c5} D ∪ A: UNSAT {c3}
{c1, c2, c5} ∪ {c4} {c1, c2, c3}, {c1, c4, c5} D ∪ A: UNSAT {c3, c4}

5 Experimental Results

We implemented the proposed approach (Algorithm 2), mcscache-els, on top of the
state-of-the-art MCS enumeration tool mcsls [17] in C++, extending the ELS algorithm
to use a core database for caching, and using Minisat 2.2.0 [9] as a backend solver.
We implemented two optimizations: we use (i) satisfying assignments obtained from
satisfiable SAT solver calls to extend the set S with all clauses in U satisfied by the
assignments, and (ii) disjoint unsatisfiable cores by computing a set of disjoint cores
at the beginning of search, which can lead to avoiding some calls to the SAT solver
during the computation of MCSes. The current implementation does not use the so-
called backbone literals optimization [17] with the intuition that this would make the
core database non-monotone and thereby queries to the cache potentially more time-
consuming.

We compare mcscache-els with two state-of-the-art approaches: ELS, which is the
basis of mcscache-els, and CLD [17]. Both ELS (mcsls-els) and CLD (mcsls-cld) are
implemented in the tool mcsls [17]. All algorithms accept formulas with soft and hard
clauses. As benchmarks, we used the 811 instances from [17] for which an MCS could
be extracted. These instances were originally used for benchmarking algorithms for ex-
tracting only a single MCS. Note that, in terms of MCS enumeration, these are therefore
hard instances, and we expect caching to be most beneficial on such hard instances. The
experiments were run on a computing cluster running 64-bit Linux on 2-GHz processors
using a per-instance memory limit of 8 GB and a time limit of 1800 seconds.

We compare the performance of the algorithms in terms of the number of MC-
Ses enumerated within the per-instance time limit. A comparison of mcscache-els and
mcsls-els is shown in Fig. 1. Using caching clearly and consistently improves perfor-
mance: with only few exceptions, caching enables enumerating higher numbers of MC-
Ses. Note that the only difference between mcscache-els and mcsls-els is that the first
uses the caching approach proposed in this work. We also compare mcscache-els to
mcsls-cld; in this comparison the base algorithms are different. As can be observed
from Fig. 2, mcsls-cld exhibits better performance for instances on which a lower
number of MCSes are enumerated. However, as the number of MCSes enumerated
increases, the performance of mcsls-cld noticeably degrades compared to mcscache-els
and mcscache-els starts to clearly dominate.

Finally, we consider more statistics on the effects of caching. First, we observed
that on a significant number of the instances the number of cache misses (cache queries
which do not find the core queried for in the database) was very low, i.e., the success rate

Fig. 1: mcscache-els vs mcsls-els Fig. 2: mcscache-els vs mcsls-cld

in querying the cache was high, as > 90% of MCS clauses were often detected from
the cache, without direct access to the original formula. On the other hand, querying the
core database as currently implemented can still take a substantial amount of time on
some instances. The query time seems to correlate with the average size of cores in the
cache. In particular, on some instances cores can be very large (up to 200,000 clauses),
which made the databases queries for the SAT solver time-consuming. In the present
implementation, this seems to introduce an unnecessary overhead. This observation,
together with the empirical results, motivates studying alternative ways of querying the
database by taking into account the very simplistic form of the database, in order to
to mitigate the observed negative effects. Alternatively, heuristics aiming at removing
unused or too large cores could also be a viable and practical solution.

6 Conclusions

Analysis of over-constrained sets of constraints finds a widening range of practical ap-
plications. A central task in this context is the enumeration of minimal correction sets
of constraints, namely, MCSes. Best-performing algorithms for the highly intractable
task of MCS enumeration make high numbers of increasingly hard SAT solver calls as
the number of MCSes increases. Motivated by this, we developed caching mechanisms
to speed-up MCS enumeration. By keeping a global database in which unsatisfiable
cores found during the computation of MCSes are stored, future calls to the SAT solver
in the computation of new MCSes can be substituted by a polynomial-time check. In
particular, the global database can be represented with a monotone formula, and even
queried with low overhead using an off-the-shelf SAT solver. Empirical results confirm
that caching is effective in practice, bringing significant performance gains to a state-
of-the-art MCS algorithm. These results encourage further research on the topic. The
development of dedicated solvers for handling the database represents a promising line
of future research. Also, research on forgetting heuristics to keep the the database small
could improve performance. Finally, future efforts will target the integration of caching
within different MCS extraction algorithms.

References

1. M. F. Arif, C. Mencı́a, and J. Marques-Silva. Efficient MUS enumeration of Horn formulae
with applications to axiom pinpointing. In Proc. SAT, volume 9340 of Lecture Notes in
Computer Science, pages 324–342. Springer, 2015.

2. F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian inference with backtrack-
ing search. Journal of Artificial Intelligence Research, 34:391–442, 2009.

3. F. Bacchus, J. Davies, M. Tsimpoukelli, and G. Katsirelos. Relaxation search: A simple way
of managing optional clauses. In Proc. AAAI, pages 835–841. AAAI Press, 2014.

4. J. Bailey and P. J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In Proc. PADL, volume 3350 of Lecture Notes in Computer Science,
pages 174–186. Springer, 2005.

5. P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind. Formula caching in DPLL. Transac-
tions on Computation Theory, 1(3):9:1–9:33, 2010.

6. E. Birnbaum and E. L. Lozinskii. Consistent subsets of inconsistent systems: structure and
behaviour. Journal of Experimental and Theoretical Artificial Intelligence, 15(1):25–46,
2003.

7. Z. Chen and S. Toda. The complexity of selecting maximal solutions. Information and
Computation, 119(2):231–239, 1995.

8. S. A. Cook. The complexity of theorem-proving procedures. In Proc. STOC, pages 151–158.
ACM, 1971.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT 2003 Selected Revised Papers,
volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

10. A. Felfernig, M. Schubert, and C. Zehentner. An efficient diagnosis algorithm for inconsis-
tent constraint sets. Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing, 26(1):53–62, 2012.

11. É. Grégoire, J. Lagniez, and B. Mazure. An experimentally efficient method for (MSS,
coMSS) partitioning. In Proc. AAAI, pages 2666–2673. AAAI Press, 2014.

12. M. Kitching and F. Bacchus. Symmetric component caching. In Proc. IJCAI, pages 118–124,
2007.

13. T. Kopp, P. Singla, and H. A. Kautz. Toward caching symmetrical subtheories for weighted
model counting. In Proc. AAAI Beyond NP Workshop, volume WS-16-05 of AAAI Work-
shops. AAAI Press, 2016.

14. M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

15. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable subsets
of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

16. Y. Malitsky, B. O’Sullivan, A. Previti, and J. Marques-Silva. Timeout-sensitive portfolio ap-
proach to enumerating minimal correction subsets for satisfiability problems. In Proc. ECAI,
volume 263 of Frontiers in Artificial Intelligence and Applications, pages 1065–1066. IOS
Press, 2014.

17. J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov. On computing minimal
correction subsets. In Proc. IJCAI, pages 615–622. AAAI Press, 2013.

18. C. Mencı́a, A. Ignatiev, A. Previti, and J. Marques-Silva. MCS extraction with sublinear
oracle queries. In Proc. SAT, volume 9710 of Lecture Notes in Computer Science, pages
342–360. Springer, 2016.

19. C. Mencı́a and J. Marques-Silva. Efficient relaxations of over-constrained CSPs. In Proc. IC-
TAI, pages 725–732. IEEE Computer Society, 2014.

20. C. Mencı́a, A. Previti, and J. Marques-Silva. Literal-based MCS extraction. In Proc. IJCAI,
pages 1973–1979. AAAI Press, 2015.

21. P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M. Sánchez. Current approaches
for solving over-constrained problems. Constraints, 8(1):9–39, 2003.

22. A. Morgado, M. H. Liffiton, and J. Marques-Silva. MaxSAT-based MCS enumeration.
In Proc. HVC 2012, volume 7857 of Lecture Notes in Computer Science, pages 86–101.
Springer, 2013.

23. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. DAC, pages 530–535. ACM, 2001.

24. A. Nöhrer, A. Biere, and A. Egyed. Managing SAT inconsistencies with HUMUS. In
Proc. VaMoS, pages 83–91. ACM, 2012.

25. B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu. Representative explanations for
over-constrained problems. In Proc. AAAI, pages 323–328. AAAI Press, 2007.

26. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987.

27. T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combining component caching
and clause learning for effective model counting. In SAT Online Proceedings, 2004.

28. J. P. M. Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

29. J. Slaney. Set-theoretic duality: A fundamental feature of combinatorial optimisation. In
Proc. ECAI, volume 263 of Frontiers in Artificial Intelligence and Applications, pages 843–
848. IOS Press, 2014.

30. M. Thurley. sharpSAT - counting models with advanced component caching and implicit
BCP. In Proc. SAT, volume 4121 of Lecture Notes in Computer Science, pages 424–429.
Springer, 2006.

31. C. Zielke and M. Kaufmann. A new approach to partial MUS enumeration. In Proc. SAT,
volume 9340 of Lecture Notes in Computer Science, pages 387–404. Springer, 2015.

	Improving MCS Enumeration via Caching

