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Abstract
This overview accompanies the author’s IJCAI-16
Early Career Spotlight Talk, highlighting aspects of
the author’s research agenda with a strong focus on
some of the author’s recent research contributions.

1 Introduction
The importance of constraint satisfaction and optimization is
underlined by our need to solve and reason about increasingly
large and complex systems and computational problems, aris-
ing from AI and industrial applications, as efficiently as possi-
ble. Motivated by this need, a fundamental quest is to under-
stand the underlying factors that make real-world instances
of computational problems hard to solve, and, going beyond
this, to harness this knowledge for developing efficient and
robust algorithms for solving hard computational problems
with high practical relevance. In this quest, it is central to
combine rigorous theoretical and empirical analysis of hard
decision and optimization problems with the development of
robust practical automated reasoning techniques, rather than
focusing on either theoretical analysis, implementation-level
work on constraint solvers, or domain-specific application
studies alone.

From the classical theoretical perspective, determining
the satisfiability of a given propositional formula, i.e., the
Boolean satisfiability (SAT) problem, is one of the most fun-
damental decision problems in computer science, being the
canonical NP-complete problem. From the more applied per-
spective, however, despite the presumed intrinsic worst-case
intractability, state-of-the-art SAT solver technology today al-
lows us to tackle immense structured search spaces in an ef-
ficient manner, to the point that SAT provides the best prac-
tical approach to many important problems, surpassing the
efficiency of dedicated algorithms.

The SAT-based approach is a form of declarative program-
ming: first, a reduction, often referred to as an encoding,
from the original problem at hand to propositional logic is
developed. A complete algorithm for determining satisfia-
bility, i.e., a SAT solver, is then used to obtain either so-
lutions or proofs of non-existence of solutions to the orig-
inal problem instance. SAT solvers act as core search en-
gines within other decision procedures developed for vari-
ous expressive declarative languages, such as Satisfiability

Modulo Theories (SMT), and are also becoming central com-
ponents in Boolean optimization procedures, either on their
own, or together with state-of-the-art integer programming
systems. For many practical settings, modern SAT solvers
can be viewed as generic “practical NP oracles” that can be
used a building blocks for developing complex search proce-
dures for tackling important problems beyond NP.

In the rest of this companion paper of a IJCAI-16 Early
Career Spotlight talk, I aim to give an overview of some of
my recent research achievements, focusing on development,
analysis, and AI applications of SAT-based approaches within
and beyond NP.

2 Inprocessing SAT Solving
Decision procedures for SAT, especially modern conflict-
driven clause learning (CDCL) SAT solvers, first put for-
ward by Marques-Silva and Sakallah, act routinely as core
solving engines in many industrial and other real-world ap-
plications today. Formula simplification techniques applied
before the actual satisfiability search, i.e., in preprocessing,
have proven integral in enabling efficient conjunctive normal
form (CNF) level SAT solving for real-world application do-
mains, and have become an essential part of the SAT solv-
ing tool chain. While the most important single preprocess-
ing technique for SAT is bounded variable elimination, in re-
cent line of work [Heule et al., 2011; Järvisalo et al., 2012a;
Heule et al., 2013; 2015] we have taken SAT preprocessing
further by developing novel clause elimination [Järvisalo et
al., 2012a; Heule et al., 2015] and binary clause reasoning
techniques [Heule et al., 2011; 2013] that can provide further
simplifications especially when applied in conjunction with
other preprocessing techniques.

Going beyond developing new algorithmic techniques, un-
derstanding the effects of different preprocessing techniques
on the underlying problem structure of CNF-encoded prob-
lem instances is important, in terms of both the interplay
between different CNF-level techniques and the potential of
achieving structure-based simplifications solely by reasoning
on the clause-level. In this line of work, one of the ma-
jor insights is that blocked clause elimination simulates var-
ious earlier structure-based simplifications for circuit-level
representations, including, e.g., the Plaisted-Greenbaum en-
coding [Järvisalo et al., 2012a]. Another important ques-
tion is how efficiently specific simplification techniques can



(even in theory) be implemented; in order to be applicable
(until fixpoint) in the SAT solving workflow to real-world
problem instances with up to tens of millions of variables
and clauses, simplification techniques need to be scalable.
As shown in [Järvisalo and Korhonen, 2014], one way of
formally analyzing the runtime complexity of simplification
techniques is via proving lower bounds conditional to the
strong exponential-time hypothesis.

Taking things further than mere preprocessing, some of the
strongest SAT solvers today add more reasoning to search
by interleaving formula simplification and CDCL search.
Such inprocessing SAT solvers witness the fact that imple-
menting additional deduction rules within CDCL solvers
can leverage the efficiency of state-of-the-art SAT solving.
However, applying complex combinations of simplification
rules during CDCL search comes at a price. It requires
in-depth understanding on how different techniques can be
combined together and interleaved with the CDCL algorithm
in a satisfiability-preserving way. Moreover, the fact that
many simplification techniques only preserve satisfiability
but not logical equivalence poses additional challenges, since
in many practical applications of SAT, a solution is required
for satisfiable formulas, not only the knowledge of the sat-
isfiability of the input formula. Hence, when designing in-
processing SAT solvers for practical purposes, one also has
to address the intricate task of solution reconstruction. The
central article on inprocessing [Järvisalo et al., 2012b] estab-
lishes formal foundations for inprocessing SAT solvers via
an abstract framework that captures generally the deduction
mechanisms applied within inprocessing SAT solvers. The
framework consists of four generic and clean deduction rules.
Importantly, the rules specify general conditions for sound in-
processing SAT solving, against which specific inprocessing
techniques can be checked for correctness, as well as cap-
ture solution reconstruction for essentially proposed simplifi-
cation techniques.

Going beyond pure SAT and thus NP, a goal is to gen-
eralize known SAT preprocessing techniques and to devel-
oped novel simplification rules for more general SAT-related
contexts, such as Quantified SAT (satisfiability of quantified
Boolean formulas) [Heule et al., 2015], for extraction of min-
imally unsatisfiable subsets of clauses (MUSes) [Belov et al.,
2013], and Maximum satisfiability (the Boolean optimiza-
tion counterpart of SAT) [Berg et al., 2015a; 2015b]. In this
line of work, an important aspect is to analyze to what ex-
tent SAT preprocessing is directly applicable without further
restriction—most often it is not—and to go beyond merely
adapting already proposed techniques from SAT.

3 Hybrid Boolean Optimization
A great majority of important decision and optimization prob-
lems in artificial intelligence and knowledge representation
and reasoning (KR) are notoriously hard. In fact, variants of
various central KR problems, such as propositional circum-
scription, abduction and belief revision, are hard at least for
the second level of the polynomial hierarchy, and thus pre-
sumably go beyond NP. While NP-hard decision and opti-
mization problems are in the classical sense intractable, the

rise of surprisingly effective constraint solving technology,
including e.g. SAT and integer programming (IP) solvers,
enables finding optimal solutions to complex NP-hard real-
world problems in a variety of domains.

The number of real-world applications of Maximum sat-
isfiability (MaxSAT), the optimization counterpart of the
infamous Boolean satisfiability problem (SAT), is increas-
ing as recent breakthroughs in MaxSAT solvers are mak-
ing MaxSAT more and more competitive as a constraint
optimization paradigm. A great majority of state-of-the-
art MaxSAT solvers are core-guided, heavily relying on the
power of SAT solvers as very effective means of proving un-
satisfiability of subsets of soft constraints, or unsat cores,
in an iterative fashion towards an optimal solution. Side-
stepping from the more popular approach to developing ap-
proaches to MaxSAT based on iterative applications of SAT
solvers alone, the SAT-IP hybrid MaxSAT solvers MaxHS
and most recently our own LMHS [Saikko et al., 2016a],
implementing so-called implicit hitting set algorithms first
proposed for different contexts by Karp et al., have taken
top positions in recent MaxSAT Evaluations (http://www.
maxsat.udl.cat). LMHS also offers various additional
features, including an incremental application interface, so-
lution enumeration [Saikko et al., 2016a], and integrated pre-
processing [Berg et al., 2015a; 2015b].

Motivated by this success, in recent work [Saikko et al.,
2016b] we outline a general framework for implicit hitting set
algorithms (see also Figure 1). Specifically (but by no means
restricted to), the framework is developed with instantiations
based on SAT and IP solvers in mind; the SAT solver acts
(or, going beyond NP, multiple SAT solvers act) the role of
a “core extractor” used for extracting non-solutions, and the
IP solver acts as a hitting set optimizer, used for ruling out
the thus far found non-solutions from further consideration.
The framework thus provides novel algorithms for a variety
of hard reasoning tasks via modularly instantiating the core
extraction and hitting set modules in domain-specific ways
via SAT and IP solvers specifically well-suited for the respec-
tive tasks of providing proofs of unsatisfiability and optimiza-
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Figure 1: Generic implicit hitting set algorithm



tion. For some more details, as outlined in Figure 1, in the
general abstract setting, the approach is based on iteratively
checking a predicate p (essentially describing the problem at
hand without attention to the objective function c), extracting
a domain-specific core in case the check fails, and computing
a minimum-cost hitting set S over the thus far accumulated
set K of cores, until the predicate check succeeds. (For more
details, we refer the reader to [Saikko et al., 2016b].)

To illustrate the practical potential of the general frame-
work, going beyond NP, we have shown [Saikko et al.,
2016b] that a practical instantiation for the problem of propo-
sitional abduction—hard for the second-level of the poly-
nomial hierarchy—surpasses the efficiency of an approach
based on disjunctive answer set programming.

4 AI Applications
Argumentation
Argumentation is today a core topic in modern AI research,
with potential applications in e.g. decision support, legal rea-
soning, and multi-agent systems. Argumentation frameworks
(AFs) originally proposed by Dung provide the fundamental
formal model for knowledge representation and reasoning for
many approaches to argumentation. Syntactically, AFs are
directed graphs, where arguments are abstract entities repre-
sented by vertices. Conflicts among arguments are formal-
ized as attacks, and represented with directed edges between
arguments. Semantics of AFs—several of which have been
proposed—specify criteria for arguments’ acceptance result-
ing in sets of jointly acceptable arguments called extensions.
Notably, for central decision problems over AFs, including,
e.g., credulous and skeptical reasoning, a great majority of
AF semantics give rise to NP-hardness—and, in many cases,
beyond-NP complexity. This gives incentives of develop-
ing SAT-based beyond-NP procedures for addressing various
types of decision and optimization problems arising from ar-
gumentation applications.

A successful approach to AF reasoning is provided by
our CEGARTIX system [Dvořák et al., 2014]. Imple-
menting a SAT-based counterexample-guided abstraction re-
finement approach to second-level complete skeptical and
credulous reasoning over AFs, the system ranked at the
top in the First International Competition on Computa-
tional Models of Argumentation (ICCMA 2015; see http:
//argumentationcompetition.org) in beyond-NP
problem categories.

While skeptical and credulous acceptance are central AF
problems, argumentation is inherently a dynamic process. A
more recent focus in computational aspects of argumenta-
tion is on understanding and reasoning about argumentation
dynamics. While the complexity landscape of non-dynamic
problems on AFs is already well-established, the complex-
ity of reasoning about argumentation dynamics is less un-
derstood. In a recent line of work, we have focused on
the so-called extension enforcement problem in abstract ar-
gumentation and its generalizations [Niskanen et al., 2016;
Wallner et al., 2016]. In [Wallner et al., 2016], we pro-
vide a nearly complete computational complexity map of
fixed-argument extension enforcement under various major

AF semantics, with results ranging from polynomial-time al-
gorithms to completeness for the second-level of the poly-
nomial hierarchy. Complementing the complexity results, we
propose algorithms for NP-hard extension enforcement based
on constrained optimization. Going beyond NP, we propose
novel counterexample-guided abstraction refinement proce-
dures for the second-level complete problems, as well as an
open-source system implementation of the approach. Most
recently, we have generalized the approach to the so-called
status enforcement problem [Niskanen et al., 2016], bringing
together concepts from both static credulous/skeptical accep-
tance and AF dynamics, most closely, extension enforcement.

Machine Learning
Integration of the fields of constraint solving and machine
learning has recently been identified within the AI commu-
nity as an important research direction with high potential.
From the perspective of constraint solving, there are great op-
portunities for developing novel constraint-based approaches
to various data analysis tasks. As illustrated in Figure 2 for
the problem of learning optimal Bayesian network structures
BNSL, this is due to the fact that, after processing the input
data at hand into a suitable form (to obtain, e.g., local scores
in BNSL), in many cases the underlying computational task
has an exact declarative form as a constrained optimization
problem. In a recent line of research, we have developed
new approaches to various data analysis problems, including
structure learning of Bayesian networks [Berg et al., 2014;
Saikko et al., 2015] and chain graphs [Sonntag et al., 2015],
causal discovery and inference [Hyttinen et al., 2013; 2014;
2015], correlation clustering [Berg and Järvisalo, 2016], in-
formation visualization [Bunte et al., 2014], and frequent
itemset mining [Järvisalo, 2011], based on SAT and Boolean
optimization solvers. As shown in these works, apply-
ing constraint solvers in such domains can have various
kinds of benefits, e.g., in terms of the quality of solutions
obtained [Berg and Järvisalo, 2016; Malone et al., 2015;
Hyttinen et al., 2014]; the ability to integrate non-trivial ad-
ditional constraints—such as bounding the treewidth of net-
work structures—on the solutions of interest [Berg et al.,
2014; Berg and Järvisalo, 2016]; and the potential of de-
veloping more general exact approaches in comparison with
earlier proposed algorithmic solutions [Hyttinen et al., 2013;
2014].
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