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Abstract
Solvers for the Maximum satisfiability (MaxSAT)
problem find an increasing number of applications
today. We focus on improving MaxHS—one of
the most successful recent MaxSAT algorithms—
via SAT-based preprocessing. We show that em-
ploying SAT-based preprocessing via the so-called
labelled CNF (LCNF) framework before calling
MaxHS can in some cases greatly degrade the per-
formance of the solver. As a remedy, we propose
a lifting of MaxHS that works directly on LCNFs,
allowing for a tighter integration of SAT-based
preprocessing and MaxHS. Our empirical results
on standard crafted and industrial weighted par-
tial MaxSAT Evaluation benchmarks show overall
improvements over the original MaxHS algorithm
both with and without SAT-based preprocessing.

1 Introduction
Boolean satisfiability (SAT) solving is a modern success story
of computer science, providing means of solving various
types of hard computational problems, based on both direct
applications of SAT solvers, as well as on using SAT solvers
as core NP procedures within more complex decision and
optimization procedures. This success is based on several
breakthroughs in practical solver techniques, central to which
is preprocessing [Eén and Biere, 2005; Heule et al., 2010;
Järvisalo et al., 2012]. However, applying SAT-level pre-
processing in more complex applications of SAT solvers,
such as minimal unsatisfiable core extraction [Belov et al.,
2013a], maximum satisfiability [Belov et al., 2013b], and
model counting [Lagniez and Marquis, 2014], becomes more
difficult, as many of the central SAT preprocessing techniques
can no longer be applied directly without losing correctness.

In this work, we focus on the Maximum satisfiability
(MaxSAT) problem [Li and Manyà, 2009; Morgado et al.,
2013; Ansótegui et al., 2013], a well-known optimization
variant of SAT. Due to recent progress in MaxSAT solv-
ing [Heras et al., 2011; Koshimura et al., 2012; Davies and
Bacchus, 2013a; 2013b; Morgado et al., 2013; Ansótegui and
Gabàs, 2013; Ansótegui et al., 2013; Morgado et al., 2014;
Martins et al., 2014], MaxSAT finds an increasing number
of applications today [Jose and Majumdar, 2011; Zhu et al.,

2011; Guerra and Lynce, 2012; Berg and Järvisalo, 2013;
Berg et al., 2014; Bunte et al., 2014]. While some of the most
important SAT preprocessing techniques, such as bounded
variable elimination [Eén and Biere, 2005], cannot be directly
applied in the context of MaxSAT [Belov et al., 2013b], a
workaround is provided by applying the so-called labelled
CNF (LCNF) framework [Belov and Marques-Silva, 2012].

We focus on improving the performance of the MaxHS
approach [Davies and Bacchus, 2011; 2013a; 2013b] to
MaxSAT solving via SAT-based preprocessing. MaxHS im-
plements a hybrid approach to MaxSAT based on alternating
between SAT-based unsatisfiable core extraction and integer
programming (IP) based optimal hitting set computation over
the unsatisfiable cores. The solver was one of the best in
the 2014 MaxSAT Evaluation in the crafted weighted partial
MaxSAT category. Motivated by this, we develop a lifting of
MaxHS that works directly on LCNFs for solving MaxSAT
instances, which allows for a tight integration of SAT-based
preprocessing and MaxHS, and specifically, allows for di-
rectly re-using assumption variables from the SAT-based pre-
processing step within the MaxHS solver loop. MaxHS com-
putation heavily relies on assumption variables (both in the
SAT solver and the IP solver), enabling more re-use of as-
sumption variables from the preprocessing phase during the
whole execution of the solver compared to e.g. earlier work
on integrating preprocessing with MaxSAT algorithms [Belov
et al., 2013b]. The re-use is beneficial in terms of both hav-
ing to introduce less clauses to the solver, and, as we ex-
plain, enabling more inference within MaxHS. We formally
prove the correctness of the proposed LCNF-level lifting of
MaxHS, and present details on how the lifting can be realized
by minor modifications to the original MaxHS implementa-
tion. We present empirical results using our own compet-
itive re-implementation of MaxHS, with additional features
for implementing the LCNF-level lifting of MaxHS. The re-
sults show the benefits of the tighter integration of preprocess-
ing and MaxHS, with overall improvements over the original
MaxHS algorithm both with and without SAT-based prepro-
cessing, on standard crafted and industrial weighted partial
MaxSAT Evaluation benchmarks.

2 SAT, Preprocessing, and MaxSAT
SAT. For a Boolean variable x, there are two literals, x and
¬x. A clause is a disjunction (∨) of literals. A truth assign-



ment is a function from Boolean variables to {0, 1}. A clause
C is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) = 1
for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A
set F = {C1, . . . , Cm} of clauses, or equivalently, the con-
junctive normal form (CNF) formula

∧m
i=1 Ci, is satisfiable

(F ∈ SAT) if there is an assignment τ satisfying all clauses
in F (τ(F ) = 1), and unsatisfiable (τ(F ) = 0 for any assign-
ment τ ; F ∈ UNSAT) otherwise. The Boolean satisfiability
problem (SAT) is to decide whether a given CNF formula is
satisfiable.

SAT Preprocessing. The resolution rule states that, given
two clauses C1 = (x ∨ A) and C2 = (¬x ∨ B), the clause
C = (A∨B), the resolvent of C1 and C2, can be inferred by
resolving on the variable x. We write C = C1 ./x C2. This
is lifted to two sets Sx and S¬x of clauses that all contain the
literal x and ¬x, resp., by Sx ./x S¬x = {C1 ./x C2 | C1 ∈
Sx, C2 ∈ S¬x, and C1 ./x C2 is not a tautology}.

Bounded variable elimination (VE) [Eén and Biere, 2005],
currently the most important SAT preprocessing technique,
follows the Davis-Putnam procedure (DP). The elimination of
a variable x in a CNF formula is computed by resolving pair-
wise each clause in Sx with every clause in S¬x. Replacing
the original clauses in Sx ∪ S¬x with the non-tautological re-
solvents S = Sx ./x S¬x gives the CNF (F \(Sx∪S¬x))∪S
that is equisatisfiable with F . To avoid exponential space
complexity, VE is bounded typically by requiring that a vari-
able x can be eliminated only if the resulting CNF formula
(F \ (Sx ∪ S¬x)) ∪ S will not contain more than ∆ more
clauses than the original formula F [Eén and Biere, 2005].

A clause C in a CNF formula F is subsumed if there is a
clause C ′ ⊂ C in F . Subsumption elimination (SE) removes
subsumed clauses. The self-subsuming resolution rule states
that, given two clauses C,D ∈ F such that (i) l ∈ C and
¬l ∈ D for some literal l, and (ii)D is subsumed by C ./l D,
D can be replaced with C ./l D in F (or, informally, ¬l can
be removed from D). A step of self-subsuming resolution
(SSR), resolving C and D on l, gives the formula (F \D) ∪
{C ./l D}.

A clause C of a CNF formula F is blocked [Kullmann,
1999] if there is a literal l ∈ C such that for every clauseC ′ ∈
F with ¬l ∈ C ′, the resolvent (C\{l})∪(C ′\{¬l}) obtained
from resolving C and C ′ on l is a tautology. Blocked clause
elimination (BCE) [Järvisalo et al., 2010] removes blocked
clauses.

Maximum Satisfiability. An instance F = (Fh, Fs, c) of
the weighted partial MaxSAT problem consists of a set Fh of
hard clauses, a set Fs of soft clauses, and a function c : Fs →
N that associates a non-negative cost (weight) with each of
the soft clauses. Any truth assignment τ that satisfies Fh is a
solution to F . The cost of a solution τ to F is

COST(F, τ) =
∑
C∈Fs

(1− τ(C)) · c(C),

i.e., the sum of the costs of the soft clauses not satisfied by
τ . A solution τ is (globally) optimal for F if COST(F, τ) ≤
COST(F, τ ′) holds for any solution τ ′ to F . The cost of
the optimal solutions of F is denoted by OPT(F ). Given a
weighted partial MaxSAT instance F , the weighted partial

MaxSAT problem asks to find an optimal solution to F . From
here on, we refer to weighted partial MaxSAT instances sim-
ply as MaxSAT instances.

An unsatisfiable core of a MaxSAT instance F =
(Fh, Fs, c) is a subset F ′

s ⊆ Fs such that Fh∪F ′
s ∈ UNSAT.

An unsatisfiable core F ′
s is minimal (MUS) if Fh∪F ′′

s ∈ SAT
for all F ′′

s ⊂ F ′
s.

3 Labelled CNFs and MaxSAT
The framework of labelled CNFs (LCNFs) [Belov and
Marques-Silva, 2012; Belov et al., 2013b] allows for gen-
eralizing MaxSAT into maximum satisfiability of LCNF, as
well as for lifting SAT preprocessing techniques to MaxSAT.
Assume a countable set of labels Lbl. A labelled clause CL

consists of a clause C and a (possibly empty) set of labels
L ⊆ Lbl. A LCNF formula Φ is a set of labelled clauses. We
useCl(Φ) and Lbls(Φ) to denote the set of clauses and labels
of Φ, respectively. A LCNF formula is satisfiable iff Cl(Φ)
(which is a CNF formula) is satisfiable.

Given a LCNF formula Φ and a subset of its labels M ⊂
Lbls(Φ), the subformula Φ|M of Φ induced by M is the
LCNF formula {CL ∈ Φ : L ⊂M}, i.e., the subformula ob-
tained by removing from Φ all labelled clauses with at least
one label not in M . An unsatisfiable core of an unsatisfi-
able LCNF formula Φ is a label-set L ⊂ Lbls(Φ) such that
(i) the formula Φ|L is unsatisfiable, and (ii) if the formula
Φ|L′ is satisfiable for all L′ ⊂ L, then L is an LMUS. We
denote the set of minimal unsatisfiable cores (LMUSes) of Φ
by LMUS(Φ) A minimal correction subset (MCS) for Φ is a
label-set R ⊂ Lbls(Φ) such that (i) the formula Φ|Lbls(Φ)\R
is satisfiable, and (ii) the formula Φ|Lbls(Φ)\R′ is unsatisfiable
for all R′ ⊂ R.

In a weighted LCNF formula Φ, a positive weight wi is as-
sociated with each label in Lbls(Φ). The cost of a label-set
L ⊂ Lbls(Φ) is the sum of the weights of labels in L. Given
a weighted LCNF formula Φ such that Φ|∅ is satisfiable, any
assignment τ that satisfies Φ|∅ is a solution to the MaxSAT
problem of LCNF formulas. A solution τ is optimal if it sat-
isfies Φ|Lbls(Φ)\R for some minimum-cost MCS R of Φ. The
cost of τ is the cost of R.

From MaxSAT to Weighted LCNF MaxSAT. A MaxSAT
instance F = (Fh, Fs, c) can viewed as a weighted LCNF
MaxSAT instance ΦF by introducing (i) for each hard clause
C ∈ Fh the labelled clause C∅, and (ii) for each soft clause
C ∈ Fs the labelled clause C{lC}, where lC is a distinct label
for C with weight c(C). It is easy to see that any optimal
solution to ΦF is an optimal solution to F , and vice versa.

From Weighted LCNF MaxSAT to MaxSAT. A direct en-
coding [Belov et al., 2013b] of a weighted LCNF MaxSAT
instance Φ as a MaxSAT instance FΦ is as follows. Asso-
ciate with each label li ∈ Lbls(Φ) a distinct variable ai,
and introduce (i) for each labelled clause CL ∈ Φ a hard
clause C ∨

∨
li∈L ai, and (ii) for each li ∈ Lbls(Φ), a soft

clause (¬ai) with cost c(ai) = wi, where wi is the weight of
the label li. The resulting instance can then be input to any
MaxSAT solver.



3.1 SAT Preprocessing for MaxSAT via LCNFs
Assume that we apply a SAT preprocessing technique P di-
rectly on a MaxSAT instance F , not making a distinction
between the hard and soft clauses, and perhaps adjusting
the weights of the clauses in the resulting MaxSAT instance
in some way (weight ∞ implying a hard clause). Follow-
ing [Belov et al., 2013b], a SAT preprocessing technique P is
sound for MaxSAT if there is a poly-time computable func-
tion αP such that for any MaxSAT instance F and any op-
timal solution τ of P (F ), αP (τ) is an optimal solution of
F . As argued in [Belov et al., 2013b], based on the fact that
blocked clause elimination does not affect the set of MUSes
of any CNF formula [Belov et al., 2013a], it can be shown
that BCE is sound for MaxSAT. On the other hand, as shown
in [Belov et al., 2013b], directly applying bounded variable
elimination, self-subsuming resolution, or even subsumption
elimination is not sound.

As a remedy to this problem, in [Belov et al., 2013b] lift-
ings of VE, SSR, and SE to LCNF formulas were proposed.
Essentially, the techniques can be applied on LCNFs by tak-
ing into account the natural restrictions implied by the SAT-
level techniques on the label-sets of labelled clauses.

• The resolution rule is lifted to labelled clauses by defin-
ing the resolvent (x ∨ A)L1 ./x (¬x ∨ B)L2 of two
labelled clauses (x ∨ A)L1 and (¬x ∨ B)L2 as (A ∨
B)L1∪L2 . The rule is lifted to two sets Φ1 and Φ2 of
labelled clauses analogously to the CNF case.

• Eliminating a variable x then gives the LCNF (Φ\(Φx∪
Φ¬x)) ∪ Φx ./x Φ¬x, resulting a natural lifting of
bounded variable elimination for LCNFs.

• The self-subsuming resolution rule for LCNFs, given
two labelled clauses CL1

1 = (x ∨ A)L1 and CL2
2 =

(¬x ∨ B)L2 such that A ⊂ B and L1 ⊆ L2 results
in the formula (Φ \ {CL2

2 }) ∪BL2 .

• A labelled clause CL1
1 subsumes CL2

2 if both C1 ⊂ C2

and L1 ⊆ L2, which gives the redundancy property used
for subsumption elimination for LCNFs.

Here it is important to notice that, due to the resolution rule
for LCNFs, bounded variable elimination and self-subsuming
resolution can cause an increase in the size of the label-
sets of the resulting labelled clauses. In particular, consider
the encoding of MaxSAT as weighted LCNF MaxSAT. Even
though each labelled clause corresponding to a soft clause
in the original MaxSAT instance will have a singleton label-
set, after LCNF-level preprocessing some of the clauses can
have label-sets with more than one label. Direct encoding
of the preprocessed weighted LCNF MaxSAT instance as a
MaxSAT instance will then add multiple new variables, corre-
sponding to the labels of the labelled clauses, to the resulting
soft clauses. Furthermore, we note that in some cases LCNF-
level preprocessing may result in a labelled clause ∅L, i.e., a
labelled clause the actual clause of which is empty.

We further note that, when applying BCE together with
VE, SSE, and SE, it makes sense to consider a straightfor-
ward lifting of BCE to LCNF formulas to simplify the prepro-
cessing pipeline: a labelled clause CL is blocked in a LCNF

formula Φ if C is blocked in Cl(Φ). As BCE is sound for
MaxSAT, it clear that this lifting is sound for LCNF MaxSAT.

4 Lifting MaxHS to Weighted LCNFs
As discussed in [Belov et al., 2013b], SAT-based preprocess-
ing can be applied in the context of MaxSAT solving using
the following observations. (i) By viewing MaxSAT instances
as weighted LCNF MaxSAT instances, the LCNF-liftings of
VE, SSR, and SE can be soundly applied on MaxSAT in-
stances; and (ii) using the reduction from weighted LCNF
MaxSAT to MaxSAT, one can directly employ any MaxSAT
solver to obtain solutions to preprocessed weighted LCNF
MaxSAT instances, and hence also to the original MaxSAT
instances. However, part (ii) in this flow can in cases be
non-optimal, especially when applying one of the many SAT-
based MaxSAT solvers which use assumptions for switching
on and off soft clauses from one SAT solver call to another.1

An alternative, as done in this work, is to develop lift-
ings of the SAT-based MaxSAT solvers for weighted LCNF
MaxSAT. A benefit of doing so is that such liftings can use
the labels of the labelled clauses directly as assumption vari-
ables for the SAT solver calls. By doing this, one avoids both
adding the additional soft unit clauses introduced by the di-
rect encoding from weighted LCNF MaxSAT to MaxSAT, as
well as the additional layer of assumption variables added
afterwards by the MaxSAT solver to the soft clauses.

The special nature of preprocessed MaxSAT instances—
assumption variables being distributed to multiple clauses,
and individual clauses having multiple assumption
variables—requires care in how the assumptions are
used, which depends on the SAT-based MaxSAT algorithm
being lifted to weighted LCNF MaxSAT. In this work we lift
the previously proposed MaxHS [Davies and Bacchus, 2011;
2013a; 2013b] algorithm into the LCNF framework. Our mo-
tivation for this is that MaxHS—one of the best-performing
solvers in the 2014 MaxSAT Evaluation crafted weighted
partial category—heavily relies on assumption variables.
This makes it a prime candidate for integrating the idea of
re-using assumption variables from the preprocessing phase.

MaxHS. An overview of MaxHS is presented as Algorithm 1.
MaxHS is a core-guided algorithm that exploits the fact that,
when invoked on an unsatisfiable set of clauses, most CDCL
SAT solvers can output an unsatisfiable core over the as-
sumption variables used in the solver calls. During execu-
tion, MaxHS maintains a collection C of cores (over the soft
clauses) of the input MaxSAT instance F = (Fh, Fs, c). At
each iteration, a minimum-cost hitting set H over C is com-
puted. This hitting set problem is stated over the assumption
variables and solved using an IP solver. A SAT solver is then
invoked on Fh ∧ Fs with the assumption variables in H set
to 1 (and the other assumption variables to 0). If the solver
reports satisfiable, the algorithm terminates and returns the
truth assignment produced by the SAT solver, which is guar-
anteed to be an optimal solution to F . If the solver reports

1Assumptions refer to adding a distinct fresh variable ai to each
of the soft clauses Ci in the input formula. Calling the SAT solver
under the assumption ai = 1 is equivalent to removing Ci from the
instance. Similarly, the assumption ai = 0 switches the clause on.



Input: A MaxSAT instance F = (Fh, Fs, c)
Output: An optimal solution τ for F
C ← ∅ // set of found unsat cores of F
while true do

H ← MINCOSTHITTINGSET(C)
(result, C, τ)← SATSOLVE(Fh ∪ (Fs \H))
if result=”satisfiable” then

return τ // solver returned SAT
else
C ← C ∪ {C} // solver returned unsat core of F

end
end

Algorithm 1: The MaxHS algorithm

unsatisfiable, the algorithm obtains a new core C from the
SAT solver and reiterates. The intuition behind the algorithm
is that when the reduced formula is satisfiable, the found hit-
ting set is also a minimum-cost hitting set over all MUSes of
F . Hence removing the clauses in the hitting set removes all
sources of unsatisfiability from the formula in a minimum-
cost manner [Davies and Bacchus, 2011].

MaxHS for Weighted LCNFs. While our lifting of the
MaxHS algorithm to LCNFs, LCNF-MaxHS (Alg. 2), closely
follows the original MaxHS algorithm, it also makes a criti-
cal shift from the clause-centric view (with a single distinct
assumption variable for each soft clause) to a label-centric
view in which overlapping label-sets with more than one label
are allowed. This generalizes MaxHS to LCNFs, while still
maintaining correctness (as proven in the following). The un-
satisfiable cores on the LCNF-level are explicitly maintained
as sets of labels. On each iteration, LCNF-MaxHS checks the
satisfiability of the subformula now induced by Lbls(Φ) \ R
for some minimum-cost hitting set over the collection of iden-
tified cores L of Φ. Notice that inducing a subformula by
Lbls(Φ) \ R is analogous to removing all clauses present in
the hitting set of the original MaxHS algorithm.

4.1 Correctness
We proceed by a formal correctness proof for LCNF-MaxHS,
which relies on the hitting set duality theorem for LC-
NFs [Belov and Marques-Silva, 2012]. Recall that a hitting
set H over an arbitrary collection of sets S is irreducible if
no H ′ ⊂ H is a hitting set over S.

Theorem 1 A label-set M ⊂ Lbls(Φ) of a LCNF formula
Φ is an MCS of Φ iff it is an irreducible hitting set over
LMUS(Φ).

The correctness follows from the following.
Proposition 1 Let Φ be a LCNF formula, L ⊂ P(Lbls(Φ))
a set of its cores, and R a minimum-cost hitting set over L.
Assume τ is an assignment satisfying Φ|Lbls(Φ)\R. Then R is
a minimum-cost irreducible hitting set over LMUS(Φ).
Proof. 1) R is a hitting set over LMUS(Φ). Otherwise there
would be a LMUS M of Φ such that M ⊂ Lbls(Φ) \ R,
contradicting the assumption that Φ|Lbls(Φ)\R is satisfiable.

2) R is irreducible as any R′ ⊂ R that is a hitting set over
LMUS(Φ) is also a hitting set over L. As R′ contains fewer

Input: A weighted LCNF MaxSAT instance Φ
Output: An optimal solution τ for Φ
L ← ∅ // set of found unsat cores of Lbls(Φ)
while true do

R← MINCOSTHITTINGSET(L)
(result, L, τ)← SATSOLVE(Φ|Lbls(Φ)\R)
if result=”satisfiable” then

return τ // solver returned SAT
else
L ← L ∪ {L} // solver returned unsat core of

Lbls(Φ)
end

end
Algorithm 2: LCNF-MaxHS, lifting of MaxHS to LCNFs

labels than R, it has to be of lower cost, contradicting the
assumed minimum cost (over the hitting sets of L) of R.

3) R has minimum cost over all hitting sets of LMUS(Φ)
which follows, similarly to case 2, from the fact that any hit-
ting setR′′ over LMUS(Φ) is also a hitting set over L. Hence
R′′ has to have at least the same cost as R. �

Theorem 2 The assignment τ returned by the LCNF-MaxHS
algorithm is an optimal solution to the weighted MaxSAT
problem for LCNFs.
Proof. By Proposition 1, τ satisfies Φ|Lbls(Φ)\R for a
minimum-cost irreducible hitting set R over LMUS(Φ). By
Theorem 1, R is also a minimum-cost MCS of Φ. �

4.2 Integrating SAT-Based Preprocessing and
LCNF-MaxHS

Given a MaxSAT instance F = (Fh, Fs, c) as input, the dis-
cussed SAT-based preprocessing can be integrated with the
lifting of MaxHS to the weighted LCNF setting as follows.

1. Apply the labelled liftings of BCE, VE, SSR, and SE
on ΦF (i.e., F as a weighted LCNF MaxSAT instance),
to obtain the preprocessed LCNF Φ′

F .
2. Solve Φ′

F using LCNF-MaxHS.
In practice, the steps above can be implemented, based on

the correctness of the LCNF-MaxHS algorithm, by extending
the MaxHS algorithm to take as part of the input an explicit
listing of assumption variables and modifying the implemen-
tation to directly use these assumption variables instead of in-
strumenting the input soft clauses with new assumption vari-
ables. More precisely, we do the following:
1’. Extend each Ci ∈ Fs with a distinct new assump-

tion variable and apply BCE, VE, SSR, and SE on
Fh ∧

∧
Ci∈Fs

(Ci ∨ ai), forbiding the removal of any
ai variables during preproccessing. Divide the resulting
set of clauses into (i) “hard” clauses F ′

h which do not in-
clude any of the assumption variables ai and (ii) “soft”
clauses F ′

s which each contain at least one of the as-
sumption variables.

2’. Apply MaxHS on the MaxSAT instance (F ′
h, F

′
s, c

′),
where c′(ai) = c(Ci) for each Ci ∈ Fs, and explicitly
guide MaxHS to work on the ai variables as the assump-
tion variables.



Notice especially that step 2’ avoids adding the soft unit
clauses over the assumption variables—produced by the ear-
lier mentioned direct encoding—that encode the weights of
the clauses to which the assumption variables are added in
the direct encoding. This makes a difference when applying
the MaxHS algorithm, as explained in the following.

Eq-seeding was proposed in [Davies and Bacchus, 2013a]
for improving the efficiency of solving the minimum-cost hit-
ting set problems with IP. In short, eq-seeding uses the fact
that each binary clause (l ∨ ai), where ai is an assumption
variable, can actually be viewed as the logical equivalence
l ↔ ¬ai [Davies and Bacchus, 2013a]. While these logi-
cal equivalences are not added to the SAT solver, they can be
used for deriving additional linear constraints that are added
to the hitting set IPs as follows: if for each literal lj of a
clause C = (l1 ∨ · · · ∨ lm ∨ lm+1 ∨ · · · ∨ ln) in the MaxSAT
instance, either (i) lj or ¬lj is equivalent to an assumption
variable ai (i.e., (lj ↔ ai) or (¬lj ↔ ai)); or (ii) lj is an
assumption variable itself (in which case we implicitly have
(lj ↔ lj)), then replacing lj by its equivalent assumption
variable for each of the variables in C gives a linear at-least-
one constraint purely over the assumption variables. These
derived linear constraints are added to the IP solver.

An interesting observation here is that eq-seeding within
our LCNF-MaxHS implementation can in some cases de-
rive more linear constraints than when invoking the original
MaxHS algorithm on the direct encoding after preprocessing.
Example 1 Assume that, after preprocessing, we have the
LCNF formula Φ = {(∅){a1,a2}, (¬x1){a3}, (¬x2){a4}, (x1∨
x2)∅}. For LCNF-MaxHS, these labelled clauses are repre-
sented as the clauses F = {(a1 ∨ a2), (¬x1 ∨ a3), (¬x2 ∨
a4), (x1 ∨ x2)} where the ais are used as assumption vari-
ables. From (a1 ∨a2), eq-seeding infers the linear constraint
a1 +a2 ≥ 1. Furthermore, since a3 can be considered equiv-
alent to x1, and a4 to x2, eq-seeding infers a3 + a4 ≥ 1. In
contrast, consider invoking the original MaxHS algorithm on
the direct encoding of Φ, i.e., the MaxSAT instance (Fh, Fs)
with Fh = F and Fs = {(¬a1), (¬a2), (¬a3), (¬a4)}. With-
out any knowledge of the fact that the ai variables could
be used as assumptions, MaxHS will add to each unit soft
clause (¬ai) a new assumption variable bi, giving the clause
(¬ai ∨ bi), and will hence consider ai to be equivalent to bi
for each i. From this, eq-seeding can still infer b1 + b2 ≥ 1,
which is equivalent to a1 +a2 ≥ 1 inferred by LCNF-MaxHS.
However, eq-seeding in MaxHS will not be able to infer the
second linear constraint inferred by eq-seeding within LCNF-
MaxHS.
Special Cases Arising from Preprocessing. Finally, we note
an interesting special case arising purely from applying the
labelled preprocessing techniques to MaxSAT instances. As
already mentioned, in our experiments we often observed
labelled clauses of the form ∅L, which is equivalent to a
MaxSAT clause

∨
li∈L ai, i.e., a clause consisting purely of

assumption variables. In fact, in the experiments we report
on in the following, we observed that for some benchmarks,
preprocessing resulted in instances purely consisting of such
clauses. Such clauses can be directly added as the linear con-
straint

∑
li∈L ai ≥ 1 to the IP solver used for solving the

hitting set problems. This is actually done automatically by
the eq-seeding technique proposed in [Davies and Bacchus,
2013a] and implemented in our solver.

5 Implementation and Experiments
For implementing the lifting of MaxHS to weighted LCNFs
(Alg. 2), we extended our own prototype re-implementation
of the MaxHS algorithm for weighted LCNF MaxSAT. Re-
fining Algorithm 1, this re-implementation includes the SAT
solver tweaks and disjoint phase of [Davies and Bacchus,
2011], the non-optimal hitting set computations of [Davies
and Bacchus, 2013b], as well as the core minimization and
eq-seeding techniques of [Davies and Bacchus, 2013a]. Min-
iSAT 2.2.0 [Eén and Sörensson, 2003] is used as the underly-
ing SAT solver and IBM CPLEX 12.6.0 [Cpl, 2015] is used
to solve the minimum-cost hitting set IPs. We extended our
MaxHS implementation to take a list of assumption variables
as part of the solver input.

As the SAT preprocessor, we used Coprocessor 2.0 [Man-
they, 2012] that we modified to add the required assumption
variables to the soft clauses, and used its whitelisting fea-
ture to forbid removal of any occurrences of the assumption
variables during preprocessing. For the experiments reported
on, we did not yet integrate Coprocessor into our MaxHS re-
implementation. Instead, although somewhat non-optimal in
terms of time spent on preprocessing, we called Coprocessor
sepaately from the solver, applying BCE, VE, SSR, and SE.
The total preprocessing time is included in the running times
reported.

We report on experiments using the following solvers.

MHS2.5: The most recent version of the original implemen-
tation of the MaxHS algorithm (reference purposes).
MHS: our re-implementation of MaxHS.
MHS+pre: MHS with preprocessing, using the direct
encoding after preprocessing.
LMHS+pre: MHS with preprocessing, re-using the assump-
tion variables from preprocessing (i.e., LCNF-MaxHS with
preprocessing).
Eva: the best-performing solver in the weighted partial
industrial category of MaxSAT Evaluation 2014 [Narodytska
and Bacchus, 2014].
Eva+pre: Eva with preprocessing, using the direct encoding
after preprocessing.

We used all 624 instances from the weighted partial crafted
(214) and industrial (410) categories of MaxSAT Evaluation
2014 (http://www.maxsat.udl.cat/14/). Note that the weighted
partial crafted benchmark set contains 310 instances; how-
ever, 96 of the instances do not contain hard clauses. The
experiments were run on a cluster of 2.53-GHz Intel Xeon
quad core machines with 32-GB memory and Ubuntu Linux
12.04. A timeout of 1 h was enforced for solving each bench-
mark instance.

Results are presented in Figures 1 and 2. Figure 2 shows
the number of instances solved for different time limits over
all the benchmarks. For example, to solve 500 instances,
MHS needs a per-instance timeout of 1500 s, while less than
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Figure 1: Comparison of MaxHS variants with and without preprocessing, runtimes in seconds. Left: MaxHS w/o preprocessing
v MaxHS w/preprocessing using the direct encoding; middle: MaxHS w/o preprocessing v LCNF-MaxHS w/preprocessing;
right: MaxHS w/preprocessing using the direct encoding v LCNF-MaxHS w/preprocessing.

500 s suffices for LMHS+pre. Using the direct encoding after
preprocessing decreases the performance of MHS, especially
on the crafted instances. LMHS+pre clearly improves over
the direct encoding and over not using preprocessing at all.
Also note that our re-implementation of MaxHS appears to
be competitive when compared to the latest version of the
original MaxHS solver (MHS2.5), as well as Eva when com-
paring over all weighted partial instances. Figure 2 also gives
some insight into the effect of the individual preprocessing
techniques on the performance of LMHS. We ran two sets of
experiments, one only using VE, SSR, and SE ( “NoBCE”)
and one only using BCE (“OnlyBCE”). The combination of
all techniques resulted in 99 timeouts for LMHS, while using
BCE only resulted in 98 and leaving out BCE in 95 timeouts.
These differences are due to industrial instances.

Figure 1 gives a pairwise comparison of MHS, MHS+pre,
and LMHS+pre. Figure 1 (right) shows that LMHS+pre (pre-
processing and re-using assumptions) improves noticeably on
MHS+pre (preprocessing and direct encoding). MHS+pre
performs noticeably worse than MHS (no preprocessing)
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Figure 2: Cactus plot comparing the different MHS variants

on the crafted instances (Figure 1 left). LMHS+pre im-
proves on MHS+pre on these instances (Figure 1 right), with
performance closer to that of MHS. On the industrial in-
stances, the results between MHS+pre and MHS are incon-
clusive. LMHS+pre on the other hand improves somewhat
on MHS+pre and more on MHS. LMHS+pre timed out on 99
instances (18 crafted, 81 industrial), MHS on 111 (18, 93).
LMHS+pre timed out on only 1 (industrial) instance solved
by MHS, while MHS on 13 instances solved by LMHS+pre
(all industrial). We also conducted experiments on the un-
weighted partial crafted benchmarks from the 2014 MaxSAT
Evaluation: MHS timed out on 212, (88 of 421 crafted and
124 of 568 industrial), MHS+pre on 280 (129, 151) and
LMHS+pre on 204 (84, 120). As a comparison, MHS2.5
timed out on 200 instances (90, 110) and Open-WBO [Mar-
tins et al., 2014], one of the best-performing solvers in the
2014 partial industrial track, on 206 (122, 84).

6 Conclusions
We presented a lifting of the MaxHS algorithm to labelled
LCNFs, enabling a tighter integration of preprocessing and
MaxHS via re-using assumption variables from the prepro-
cessing step. We explained how the lifting can be imple-
mented via modifications to MaxHS, and pointed out concrete
examples of why assumption re-use can be beneficial. Ex-
periments showed that our LCNF lifting of MaxHS does im-
prove the effectiveness of preprocessing especially on crafted
weighted partial MaxSAT, and also improves on the overall
performance of MaxHS both with and without direct prepro-
cessing. For future work, an interesting question is if other
MaxSAT solvers, such as Eva, could benefit from tighter in-
tegration of preprocessing.
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